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Chapter 1

Introduction

Macroscopic properties of materials are strongly affectedby the microstructure. Microstructure, on

the other hand, is a complex feature with very different aspects which often depend even on the

method of investigation. The most common and most effectivemicrostructure testing is based on

electron probing. Transmission electron microscopy (TEM)provides direct images of the microstruc-

ture of almost any kind of materials including hard crystalline, hard amorphous or soft materials.

Scanning electron microscopy (SEM) can test bulk materials, however, only the surface or surface

near regions. The focussed ion beam (FIB) technology combined with SEM and TEM offers new

perspectives for extremely sophisticated microstructuretesting opportunities. Still, there are numer-

ous important features, especially residual internal stresses, microstresses, or different kinds of size

distributions which easily escape the observation facilities of electron microscopy methods. X-ray

line broadening was one of the first promising methods of microstructure testing, long before electron

microscopy, emerged in the early twenties. However, the first promising results faded away when it

turned out that experimental uncertainties and interpretation difficulties did not allow straightforward

conclusions. As a result, in the sixties and seventies electron microscopy was thought to be the only

reliable method for characterising the microstructure andX-ray line profile analysis was almost for-

gotten. From the seventies onward, the appearance of dedicated synchrotron X-ray sources, better

laboratory X-ray generators, improved X-ray detectors andnew, more appropriate fundamental the-

ories of diffraction by crystals containing defects, gave anew impetus to X-ray line profile analysis.

Today, the fast computer technology and greatly enhanced experimental possibilities brought back

X-ray line profile analysis as one of the most effective alternative methods to electron microscopy for

the characterisation of the microstructure of crystallinematerials. The aim of the present dissertation

is to provide a comprehensive summary of the theoretical considerations, experimental and numerical

methods which were developed for the evaluation of X-ray diffraction patterns in terms of disloca-

tion density, dislocation character, crystalite size and size distributions, and planar defects (especially

stacking fault and twin boundary frequency). A computer software package has been developed which

allows to evaluate different diffraction patterns measured on different crystalline materials: powders,

bulk polycrystals, single crystalline samples or texturedspecimens. The different parts of the soft-

ware package offer different ways of the evaluation which can be optimally adapted to the particular
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problem. For example, in the case of single crystals, the individual diffraction profiles of different

Bragg reflections can be analysed in terms of individual dislocation contrast (or orientation) factors.

Or, in the case of an ideally random powder specimen, the whole measured powder pattern can be

evaluated with the same philosophy as the structure refinement by the Rietveld method. In this case

the whole measured pattern is fitted by a theoretically constructed diffraction pattern which is ex-

pressed in terms of dislocation structures by average dislocation contrast factors and a crystallite size

distribution function. In the entire software package the evaluation is based on microstructural mod-

els in which strain is assumed to be caused by dislocations, size broadening is caused by coherently

scattering domains and planar defects are included on the basis of simulated diffraction profiles.

The software package was applied successfully to more than adozen cases of completely different

materials which have been evaluated for the microstructure, cf. [S1-S23]. The most important facili-

ties provided by the software package are the following.

(i) It allows the fitting of the separated diffraction profiles or their Fourier transforms by theoreti-

cal intensity profiles or Fourier coefficients calculated for the concomitant size and strain effect

(where strain is considered to be produced by dislocations). This part of the package is the Mul-

tiple Whole Profile (MWP) fitting procedure [S4, S6]. The dislocation densities, the character

of dislocations and the subgrain size distribution in copper deformed by equal channel angular

pressing (ECAP) [S4, S6] and ball milled PbS (galena) [S9] was evaluated by the MWP proce-

dure. Shape anisotropy in carbon-black [S4, S5, S6, S8] and crystallite size distribution and the

dislocation density in hexagonal Si3N4 were also evaluated by the MWP method [S1].

(ii) Measured diffraction patterns can be fitted by numerically constructed diffraction patterns in

which the size and strain effects are theoretically calculated and can be convoluted with the

measured instrumental profiles. In this procedure all the different profile functions, i.e. the

size, the strain and the instrumental profiles are convoluted, therefore the method is called:

Convolutional Multiple Whole Profile (CMWP) fitting procedure [S14].

(iii) In both, the MWP and CMWP methods, the strain profiles can either be scaled by average

dislocation contrast factors,C, or by individual dislocation contrast factors,Chkl. Former cor-

responds to the case when averaging over the permutations ofthe hkl indices is appropriate,

whereas latter applies when the specimen is either a single crystal or strongly textured. When

strain anisotropy is treated by using the individual dislocation contrast factors, it means that the

strain part of each diffraction profile is scaled by a separate individual scaling parameter.

(iv) Balogh and coworkers have systematically analysed theeffect of planar defects in cubic [S18]

and hexagonal crystals (Balogh et al., 2008). It was found that the planar faults profile can be

given as the linear combination of a delta function and one ormore Lorentzian functions. The

systematic analysis provides the correlation between the planar fault densities and the different

parameters of the Lorentzian functions. The profile functions and the parameter files were

incorporated into the CMWP method [S18].
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In a mechanically alloyed Al base Al-Mg alloys the subgrain size distribution, or coherently scattering

domain size distribution and the dislocation densities andcharacter were determined by the CMWP

method [S14]. These microstructural parameters were evaluated and analysed as a function of the

Mg concentration. The diffraction patterns were also evaluated by the MWP method. The results

provided by the MWP and CMWP methods are critically discussed (see in section 5.3).

The diffraction patterns of different ball milled states ofthe CaF2, SrF2, BaF2 and CdF2 fluorides have

been analysed by the CMWP procedure in terms of dislocation densities and types, and crystallite size

and size distributions [S17]. An unusual X-ray optical interference effect of line broadening, similar

to what was observed earlier by Rafaja et al. (2004) is found in particular states of the ball milled

fluorides. The interference effect has been successfully corrected (see in section 5.5).
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Chapter 2

Theoretical aspects of X-ray line broadening

In this chapter the different fundamental theoretical models of size and strain broadening and planar

faults are reviewed. The size profile and its Fourier transform corresponding to spherical domains or

crystallites with lognormal size distribution is calculated. The same is also determined for anisotropic

crystallite shape. The model of strain broadening is brieflypresented for different dislocation dis-

tributions. Strain anisotropy is discussed and described in terms of the anisotropic strain effect of

dislocations. The concept of dislocation contrast factorsis presented for different crystal systems.

The broadening caused by planar defects is briefly discussed. The models described here are the the-

oretical background of the two microstructural methods of line profile analysis described in detail in

Chapters 4 and 5.

2.1 Line profile parameters

The X-ray diffraction measurements usually provide theI(2θ) intensity profiles of the different reflec-

tions. In order to compare this with theory, it is practical to convert the variable 2θ to g, the variable

of the reciprocal space, whereg =
2sinθ

λ is the absolute value of the diffraction vector. The value

of g at 2θB, the exact Bragg position, is denoted bygB and it is expressed as:gB =
2sinθB

λ . In the

following ofteng will be denoted also byK.

The variable of the intensity profiles can be expressed as:

s= g−gB ≈
2cosθB

λ
∆θ. (2.1)

The most important characteristic parameters of anI(s) intensity function corresponding to the Bragg

peak at 2θB are:

• the maximum intensity:

I0 = max{I(s) |s∈ R}. (2.2)

• the Full Width at Half Maximum (FWHM):
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FWHM{I(s)}= s2−s1, wheres1 < s2 andI(s1) = I(s2) =
I0

2
. (2.3)

• the integral breadth(equivalent to the area of the normalised intensity curve):

β =

∞
R

−∞
I(s)ds

I0
. (2.4)

In X-ray diffraction the relation FWHM< β is usually satisfied.

2.2 Size broadening of diffraction profiles

With decreasing scattering volume the diffraction profilesbroaden. This is called size broadening.

The X-ray measurements provide the coherently scattering domain size (crystallite size). This is

often smaller than the grain or subgrain size obtained by transmission electron microscopy (TEM),

however, Hansen and coworkers claim that when TEM micrographs are evaluated correctly then the

X-ray and TEM sizes correlate well (Winther et al., 2004). InUngár et al. (2005) it was shown that

the coherently scattering domain size given by X-ray line profile analysis provides the subgrain or

cell size bounded by small angle grain boundaries or dipolarwalls. In the present section the effect

of the coherently scattering domain size on the diffractionprofiles is discussed.

2.2.1 Size parameters

The definition of the commonly used different size parameters (2.12), (2.13) and (2.16) is presented

through a simple case study (Warren, 1969). Let’s assume an infinite plane crystallite with the thick-

ness of N atoms. According to the theory of kinematical X-rayscattering, the line profile of this

special crystallite (Warren, 1969):

I(s) ∼
sin2(N x)

sin2(x)
, (2.5)

wherex = πGa, G = g+ ∆g, g is the diffraction vector,∆g is a small vector, anda is the unit cell

vector chosen to be perpendicular to the plane of the crystallite. The function
sin2(Nx)
sin2(x)

describes the

shape and position of the peaks in this special case. This function is plotted for different values ofN

in Fig. 2.1. It has a maximum value at positions:x = nπ, n∈ Z. This condition is equivalent to the

Laue equations. The maximum value of this function is lim
x→0

sin2(Nx)

sin2(x)
= N2.

For large values ofN this profile function can be approximated by the following simple function:

sin2(Nx)

sin2x
= N2

(

sin(Nx)

Nx

)2

. (2.6)
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The FWHM value of this function is given by:

sin(Nx)

Nx
=

1
√

2
. (2.7)

This transcendent equation can be numerically solved forNx: the solution isNx = 1.39, conse-

quently, the FWHM (2x) is reciprocally proportional to the number of lattice points perpendicular to

the diffracting plane:

FWHM = 2.78
1

N
. (2.8)

This means that the profile function becomes narrower as the crystallite becomes thicker. The integral

breadth of this curve is:

β =

∞
R

−∞

sin2(Nx)

x2 dx

N2
= π

1

N
. (2.9)
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Figure 2.1: The function
sin2(Nx)

sin2(x)
plotted close to its first maximum for different values ofN. As N

tends to infinity, the curve becomes a delta function.

A conventionalθ - 2θ diffractometer measures the intensity parallel to the direction of theg diffraction

vector as a function ofs= |∆g|. The FWHM and integral breadth value of theI(s) intensity function
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as a function ofs can be expressed as:

FWHM =
2.78

π

1

N acos((G,a)∡)
=

0.9

LG,a

, (2.10)

β =
1

N acos((G,a)∡)
=

1

LG,a

, (2.11)

whereLG,a = N acos((G,a)∡) is the projection of the crystallite width in the direction of the diffrac-

tion vector. This means that by measuring the widths of the peak profiles, only the crystallite size

parallel to the diffraction vector can be determined.

For the reflectionh00, LG,a is equal to the thickness of the crystal, i.e. either to
0.9

FWHM
or to

1

β
. The

following two size parameters can be defined generally for anarbitraryI(s) intensity profile:

D =
0.9

FWHM
, (2.12)

d =
1
β
. (2.13)

Eq. (2.12) is the Scherrer (1918) equation. The theoreticaldescription requires the Fourier transform

of the intensity profile too. The Fourier transform of the function
sin2(Nx)

x2 is:















π(N−π|L|), if |L| ≤ N
π

0, if |L| > N
π .

(2.14)

Fig. 2.2 shows this function.

Figure 2.2: The Fourier transform of the function
sin2(Nx)

x2 .
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For the infinite plane crystallite with the thickness of N atoms, the Fourier transform of theI(s) size

function is:


















N

LG,a

(

N− N

LG,a
|L|
)

, if |L| ≤ LG,a

0, if |L| > LG,a.

(2.15)

This means thatLG,a can be determined from the initial slope of the Fourier transform. The size

parameterL0 is generally defined for an arbitraryI(s) intensity profile as the initial slope of theAS(L)

Fourier transform (Warren & Averbach, 1952):

−
AS(0)

L0

=
d
dL

AS(L)

∣

∣

∣

∣

∣

L=0

. (2.16)

The definition ofL0 is illustrated in Fig. 2.6 for the case of spherical crystallites with lognormal size

distribution.

In general the different size parameters satisfy the following relation: D ≥ d ≥ L0 (Langford &

Wilson, 1978).

For spherical crystallitesd andL0 are proportional to the volume and area weighted average crystallite

size, respectively (Langford & Wilson, 1978):

< x >vol=

∑
i
Vidi

∑
i
Vi

=
4

3
d, (2.17)

< x >area=

∑
i

Aidi

∑
i

Ai

=
3

2
L0. (2.18)

2.2.2 Size distribution functions

In the previous section the size broadening of a single crystallite has been discussed. A polycrystalline

or fine powder sample consists of many crystallites with different sizes which can be characterised

by a size distribution function. By selecting the proper size distribution and assuming a realistic crys-

tallite shape, the size broadened profile can be calculated on a theoretical basis. Several distribution

functions can be used to describe the size distribution of crystallites (Langford et al., 2000; Scardi

& Leoni, 2002). Among these, one of the most flexible is the lognormal size distribution (Aitchison

& Brown, 1957), which was confirmed by several observations and successful applications (Valiev

et al., 1994; Terwilliger & Chiang, 1995; Krill & Birringer,1998, Ungár et al., 1999; Langford et

al., 2000). The Gamma distribution (Arley & Buch, 1950) is also suitable to describe the experimen-
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tal size distributions. York (1999) proposed another distribution. These distributions are discussed

below.

i) The lognormal distribution: this is the most commonly used size distribution of particle size in

a fine powder according to TEM observations (Aitchison & Brown, 1957). It can be shown that

a milling procedure leads to a lognormal size distribution (Hinds, 1982), therefore the lognor-

mal distribution is widely used in microstructural investigations. It is obtained by substituting

the variable of a normal distribution with its logarithm. When one applies the lognormal dis-

tribution to describe the size distribution of crystallites, this means that the logarithm of the

crystallite size follows a normal distribution. The density function of the lognormal size distri-

bution has the following form:

f (x) =
1

√
2πσ

1

x
exp






−

(

log
(

x
m

))2

2σ2






. (2.19)

wherem andσ are the parameters of the distribution, logm is the median andσ is the variance

of thenormaldistribution.

The parametersm andσ are called “median” and “variance” of the lognormal size distribution.

In the MWP and CMWP procedures [S4, S6, S14] theb = logm andc =
√

2σ parameters are

used for the fitting procedure.

ii) The Gamma distribution:

The Gamma distribution (Arley & Buch, 1950) is also flexible and can be widely used for

describing observed crystallite size distributions. Its density function has the form:

f (x) =
a

bΓ(a)

(

ax

b

)a−1

exp

(

−
ax

b

)

, (2.20)

wherea andb are the parameters of the distribution andΓ(x) is the Gamma function.

ii) York’s distribution: The York distribution (York, 1999) was obtained by assuming a normal

growth phenomena. The density function of the York distribution has a form similar to the

Gamma distribution:

f (x) =
1

bΓ(a)

(

ax

b

)a

exp

(

−
ax

b

)

, (2.21)

wherea andb are the parameters of the distribution andΓ(x) is the Gamma function.

It should be noted here that Leoni & Scardi(2004) proposed a bar-diagram for the size distribution

density function and each individual column height of this diagram is fitted independently in their

pattern-refining procedure. Since this is an ad-hoc, experimental distribution its discussion is not

subject of this theoretical section. Langford et al. (2000)have shown that most of the above discussed
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size distribution functions correlate well with experimental X-ray diffraction profiles and, that it is

difficult, if not impossible, to distinguish between size distribution functions on an experimental basis.

2.2.3 Determination of the size profile [S1, S4, S6]

By assuming a particular crystallite shape and crystallitesize distribution, one can determine the

theoretical size profile. Bertaut (1949) and Guinier (1963)have shown, that the size profile of a

powder specimen consisting of crystallites with arbitrarysize and shape can be determined as follows:

i) the crystallites should be divided into columns parallelto the diffraction vectorg,

ii) the “size intensity profile” is obtained as the volume-weighted sum of the intensity profiles

normalized by their integral intensities corresponding toeach column.

The intensity profile normalized by its integral intensity of a column with areaAi and heightMi is:

sin2(Mi πs)

Mi (πs)2
. (2.22)

By summing up the contributions from all columns of all crystallites using the volume of the column

as weight, the intensity distribution becomes:

I(s)∼ ∑
i

sin2(Mi πs)

Mi (πs)2
AiMi . (2.23)

Let us introduceg(M)dM as the sum of the volumes of the columns with height betweenM and

M +dM from all crystallites:

g(M)dM = ∑
j

dVj(M,dM). (2.24)

Using this quantity, the intensity distribution can be expressed as:

I(s) ∼
∞

Z

0

sin2(M πs)

M (πs)2
g(M)dM, (2.25)

In this way, the size profile can be obtained by determiningg(M)dM, which depends on the crystallite

shape and the size distribution of the crystallites. In the following, the size profile is calculated

according to the lognormal size distribution, and for spherical (i) and ellipsoidal (ii) crystallite shapes

[S4, S6]. Latter is a simple and general description of deviations from spherical shape. It also accounts

for anisotropic size broadening as a function ofhkl.

For a particular crystallite shapeg(M)dM is determined first for one crystallite. This calculation is

based on the geometrical properties of the crystallite shape. The size profile is obtained by summing

up for all crystallites using the crystallite size distribution function. In the case ofsphericalcrystallites

andlognormalsize distribution,g(M)dM is obtained as follows:

Using the notations of Fig. 2.3 the following geometrical equation can be written:

10



x2 = y2 +

(

M

2

)2

, (2.26)

For one crystalliteg(M)dM is equal to the volume of the part of the sphere with column length

betweenM andM +dM:

g(M)dM ≈−2πydyM. (2.27)

By differentiating eq. (2.26) the following is obtained: 2ydy=−M dM

2
. Therefore foronecrystallite:

g(M)dM ∼ M2dM. (2.28)

Since f (x)dx is proportional to the number of the crystallites with diameter betweenx andx+dx and

all the crystallites with diameterx≥ M contain the column lengthM:

g(M)dM ∼





∞
Z

M

f (x)dx



M2dM. (2.29)

Using the distribution density function in (2.19), this integral can be expressed as:

∞
Z

M

f (x)dx =
1

2
erfc







log
(

M
m

)

√
2σ






, (2.30)

where erfc is the complementary error function, defined as:

erfc(x) =
2
√

π

∞
Z

x

e−t2
dt. (2.31)

Thus forall crystallitesg(M)dM can be written as:

g(M)dM ∼ M2erfc







log
(

M
m

)

√
2σ






dM. (2.32)

Using eq. (2.25) the following size function is obtained [S1]:

IS(s) =

∞
Z

0

M
sin2(M πs)

(πs)2 erfc







log
(

M
m

)

√
2σ






dM. (2.33)
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Figure 2.3: Determination ofg(M)dM in the case of a spherical crystallite with radiusx. The goal is
to calculate the volume of the part of the sphere with column length betweenM andM +dM. This
part of the sphere is approximated by an annulus based prism and it is expressed withM, x andy,
wherey is the radius of the annulus.
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in the upper right corner of the figure.
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Figure 2.5: The size function for spherical crystallites with lognormal distribution with fixed value
of m= 2.72 nm, as a function ofs. The value ofσ varies for the different curves. The value ofσ is
indicated in the upper right corner of the figure.

This size function is plotted for different values ofmandσ in Figs. 2.4 and 2.5.

In order to speed-up the numerical calculations in the MWP and CMWP methods [S4, S6], the explicit

form of the Fourier transform of the size profile is required.In the following, the Fourier transform

of the theoretical size profile is determined [S4, S6].

According to eq. (2.14), the Fourier transform of the function
sin2(M πs)

(πs)2 is:











M−|L|, if |L| ≤ M

0, if |L| > M.

(2.34)
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Using this equation, the Fourier transform of the size function (2.33) can be expressed as:

AS(L) = 2
∞
R

0
IS(s)cos(2πsL) ds=

= 2
∞
R

0





∞
R

0
M sin2(M πs)

(πs)2 erfc





log

(

M
m

)

√
2σ



 dM



cos(2πsL) ds=

=
∞
R

0
M

(

2
∞
R

0

sin2(M πs)

(πs)2 cos(2πsL) ds

)

erfc





log

(

M
m

)

√
2σ



 dM =

=
∞
R

|L|

(

M2−|L|M
)

erfc





log

(

M
m

)

√
2σ



 dM.

(2.35)

By using substitutions and partial integration this integral can be further simplified:

AS(L) =
m3exp

(9
4(
√

2σ)
2
)

3
erfc









log

(

|L|
m

)

√
2σ

− 3
2
√

2σ









−

m2exp(
√

2σ)
2

2
|L|erfc









log

(

|L|
m

)

√
2σ

−
√

2σ









+

|L|3
6

erfc









log

(

|L|
m

)

√
2σ









.

(2.36)

Dividing AS(L) by the maximum value, the normalised size Fourier transformis obtained. The maxi-

mum value ofAS(L) is:

AS(0) =
2m3exp

(9
4(
√

2σ)
2
)

3
. (2.37)

An example for the plot of the size Fourier transform is shownin Fig. 2.6. It is noted that instead

of calculating the Fourier transform of eq. 2.23, Dr. Gubicza calculated the size Fourier transform

(Ungár et al., 2001) according to the following direct equation for AS(L) given in Guinier (1963):

AS(L) =
1

V

Z

σ(r)σ(r +L) d3r , (2.38)
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whereσ(r)=1 if r ∈ “scattering object”otherwiseσ(r)=0. The two different calculations are leading

exactly to the same result forA(L) [S4, S6].

The formulae ofIS(s) and its Fourier transformAS(L) enable to express the size parameters as a

function of the parameters of the distribution. The derivation of AS(L) gives theL0 size parameter:

L0 = −
AS(0)

(

dAS(L)

dL

)

L=0

=
2mexp

(5
4(
√

2σ)
2
)

3
. (2.39)

The maximum value of the size profile is:

IS(0) =

∞
Z

0

M3erfc







log
(M

m

)

√
2σ






dM. (2.40)

The integral of the normalized size profile leads to the size parameterd:

d =
1

β
=

IS(0)
∞
R

−∞
IS(s) ds

=
IS(0)

AS(0)
=

3mexp
(7

4(
√

2σ)
2
)

4
. (2.41)

According to eqs. (2.17) and (2.18), the following is obtained for the volume and area averaged

crystallite size:

< x >vol= mexp
(

3.5σ2) (2.42)

< x >area= mexp
(

2.5σ2) (2.43)

It is noted that these expressions for the volume and area averaged mean crystallite size are identical

to those given by Hinds (1982) and Langford et al. (2000).

2.2.4 Anisotropic size broadening [S1, S4, S6]

If the crystallite shape is spherical, the size function is isotropic and thus independent of thehkl

indices. If a non-spherical crystallite shape is supposed,the size function becomes anisotropic and

it depends on thehkl indices. In the following the size function is calculated for crystallites with

spherically ellipsoidalshape andlognormalsize distribution [S4, S6].
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Figure 2.7: The determination of the ellipsoidal size function. The radii of the spherical ellipsoid are:
a andc. There are two coordinate systems:x,y,z andx

′
,y

′
,z

′
. The latter is the eigensystem. The two

coordinate systems are rotated by an angle ofα around the axisx. The diffraction vectorg is also
indicated. The goal is to determineg(M)dM based on the geometrical properties of the part of the
ellipsoid with column length betweenM andM +dM parallel tog.
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The determination ofg(M)dM consists of the following steps (see Fig. 2.7 for the notations).

1. construction of the equation of the ellipsoid with ellipticity ε =
c

a
in the eigensystem denoted

by x
′
,y

′
,z

′
.

2. transformation with rotation of angleα around the axisx into the systemx,y,z (α is the angle

between the diffraction vector and the axis of revolution ofthe ellipsoid and z is parallel tog).

3. expression of the column lengthM: M(x,y) = z2(x,y)−z1(x,y), wherez1 andz2 are determined

using the equation of the ellipsoid.

4. determination of the area,T(M), of the plane-curve determined by equationM(x,y) = M (which

is in fact an ellipse).

5. For one crystallite the following is obtained:

g(M)dM = M[T(M)−T(M +dM)] =
π

2
h(ε,α)M2dM, (2.44)

whereh(ε,α) is determined using the equation ofM(x,y). It is noted, that in the case of a

sphere:h(1,α) = 1.

6. calculation of the maximum column lengthMmax:

Mmax=
2a

√

1+

(

1

ε2 −1

)

cos2α

(2.45)

7. summing up for all crystallites with the column lengthM and using the lognormal size distri-

bution density functionf (x):

g(M)dM ∼ h(ε,α)M2erfc



































log













M

√

1+

(

1

ε2 −1

)

cos2α

m













√
2σ



































dM. (2.46)
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The size function obtained in this way is identical to that corresponding to spherical crystallites, the

only difference is that the parametermbecomeshkl-dependent and the parametermof the distribution

has to be substituted for the followinghkl dependent expression:

mhkl =
mA

√

1+

(

1

ε2 −1

)

cos2 αhkl

, (2.47)

wheremA is the parametermof the size distribution.

If the relative orientation of the unit cell vectors to the axis of revolution of the ellipsoid are known,

cosαhkl can be expressed with thehkl indices.

For cubic crystals, if the axis of revolution is parallel to the unit cell vectora:

cosαhkl =
l

√
h2+k2+ l2

(2.48)

For hexagonal crystals, if the axis of revolution is parallel to the unit cell vectorc:

cosαhkl =
l

√

4

3

c2

a2 (h2+hk+k2)+ l2

. (2.49)

It is noted that Scardi & Leoni (2002) calculated thehkl dependent size broadening for different

polyhedra, which is another possibility to introduce size anisotropy.

2.3 Strain broadening

In a real crystal, due to the lattice defects, the atoms are displaced relative to their ideal position. For

this reason the reciprocal space may also be distorted and the condition of diffraction is satisfied not

only in the ideal positions of the reciprocal lattice points, but in a finite volume in their proximity.

This effect is called strain broadening. Warren & Averbach (1952) gave the Fourier transform of the

X-ray line profile if size and strain effects are present simultaneously:

A(L) = AS(L)AD(L), (2.50)

where the strain Fourier coefficients can be expressed in thefollowing form:

AD(L) = exp
(

−2π2g2L2〈ε2
g,L〉
)

, (2.51)
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whereg is the absolute value of the diffraction vector,〈ε2
g,L〉 is themean square strain, depending

on the displacement of the atoms relative to their ideal position, and the brackets indicate spatial

averaging.

According to the continuum theory of elasticity, the longitudinal strain parallel to the direction of the

g diffraction vector is defined as (Wilkens, 1970):

εg(L, r) =

g
|g|u(r +

L
2

g
|g|)−

g
|g|u(r − L

2
g
|g|)

L
, (2.52)

whereu is the displacement field andL is the distance of the pointsr +
L
2

g
|g| andr − L

2
g
|g| . Thus the

mean square strain is obtained as:

〈ε2
g,L〉 =

RRR

V
(εg(L, r))2 d3r

RRR

V
d3r

(2.53)

For discrete atoms, the strain,εg,L is defined as:

ε( j , j
′
)

g,n =

g
|g|u(r j)− g

|g|u(r j′ )

nl0
, (2.54)

where j and j
′

are the indices of the atoms in the direction ofg, n = j − j
′
, L = nl0 and l0 is the

distance between two atoms in the direction ofg (Warren & Averbach, 1952). The mean square strain

is obtained as the square of the strain averaged over all atomic pairs with the distance ofnl0:

〈ε2
g,L〉 =

∑
j− j ′=n

(ε( j , j
′
)

g,n )2

∑
j− j ′=n

1
(2.55)

Several authors worked on the determination of the mean square strain, including Warren & Averbach

(1952), Krivoglaz & Ryaboshapka (1963) and Wilkens (1970).Warren and coworkers (1952, 1959)

assumed either random atomic displacements and/or stacking faults. Krivoglaz (1969) and Wilkens

(1970) assumed dislocations as the main source of peak broadening close to the fundamental Bragg

positions. Krivoglaz and Ryaboshapka (1963) assumed a totally random distribution of dislocations

in the entire crystal and for smallL values obtained:

〈ε2
g,L〉 =

(

b
2π

)2

πρC log

(

D
L

)

, (2.56)

whereD is the crystal size. The problem with this formula is that (i)it diverges asD tends to infinity

and (ii) using this strain function, the strain Fourier transform does not decay asL tends to infinity.

However, for smallL values this logarithmic expression enables to estimate thedislocation density,
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for more details see the description of themodifiedWarren-Averbach method in section 3.2.

The logarithmic behaviour of the mean square strain for small L values, as a general property of any

dislocation configuration was derived by a fairly exact method by Groma (1998, 2003).

A numerical code has recently been developed in [S23] to calculate the mean square strain and the

strain profile for an arbitrary sized (e.g. 100x100 nm) crystal box containing up to a few hundred

randomly distributed straight parallel edge dislocations. The numerical evaluation of eq. (2.53) has

proved the logarithmicL dependence of〈ε2
g,L〉 for smallL values in correlation with Krivoglaz (1969),

Wilkens (1970) and Groma (1998). Fig. 2.8 shows a typical example for 10 dislocations in a 50x50

nm crystal box.
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Figure 2.8: The mean square strain calculated for 10 randomly distributed edge dislocations in a
50x50 nm crystal box. Thex scale is logarithmic. The dashed line indicates that the calculated mean
square strain can be well described by a logarithmic function between approx. 10 and 25 nm.

Wilkens (1970) calculated the mean square strain in the entireL range assuming the so calledrestrict-

edly randomdistribution of dislocations. This calculation is discussed in somewhat more detail in the

next paragraph.

2.3.1 The Krivoglaz–Wilkens model of dislocations

Wilkens improved the model of Krivoglaz by introducing a length parameter, the effective outer cut

off radius of dislocations (R∗
e), instead of the crystal diameter, by this eliminating the logarithmic

singularity in the expression of the mean square strain in eq. (2.56). He assumed that the crystal

contains separate regions with diameter ofR∗
e, in which parallel screw dislocations are randomly
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distributed. Within each of these regions the distributionof the dislocations is completely random

and they have a density of exactlyρ. There is no interaction between dislocations outside of these

regions. He called this special dislocation configuration restrictedly random distribution and the mean

square strain was derived in the following form for the entireL range (Wilkens, 1970):

〈ε2
g,L〉 =

(

b
2π

)2

πρC f

(

L
R∗

e

)

, (2.57)

whereb is the absolute value of the Burgers-vector,ρ is the dislocation density,C is the contrast factor

of the dislocations andf is the strain function. In the followingf will be called the Wilkens function.

f has the following explicit form, see eqs. A6-A8 in Appendix Ain Wilkens (1970):

f ∗(η) = − logη+
(7

4− log2
)

+
512
90π

1
η+

2
π

[

1− 1
4η2

] η
R

0

arcsinV

V
dV−

1
π
[769

180
1
η +

41
90η+

2
90η3

]

√

1−η2−

1
π

[

11
12

1
η2 +

7
2 +

1
3η2

]

arcsinη+
1
6η2, if η ≤ 1,

f ∗(η) =
512
90π

1
η −

[11
24+

1
4 log2η

] 1
η2 , if η ≥ 1,

(2.58)

where f

(

L
R∗

e

)

= f ∗(η) andη =
1
2 exp

(

−1
4

)

L
R∗

e
.

The Wilkens function and its approximations for small and large values ofL are plotted in Fig. 2.9.

In the Wilkens function the same logarithmic term is presentas in the Krivoglaz model, but it does

not diverge with the crystallite size, since it depends on the correlation length parameter,R∗
e, which

is a finite parameter of the distribution. A common property of the Krivoglaz and Wilkens models is

that the mean square strain has a singularity for small values ofL. This singularity does not affect the

shape of the line profiles considerably, since in the Fouriertransform it is multiplied byL2 and this

multiplier strongly compensates the divergence:L2 logL → 0, if L → 0.

It is noted that in previous papersRe = exp(2)R∗
e = 7.4R∗

e was used as the effective outer cut–off

radius of dislocations (Ungár et al. 1984; Wilkens, 1988; Hecker et al., 1997).

Inserting eq. (2.57) into (2.51), one obtains the strain Fourier–transform:

AD(L) = exp

[

−πb2

2
(g2C)ρL2 f

(

L
R∗

e

)]

. (2.59)
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Kamminga and Delhez (2000) have shown using numerical simulations that the line profile calculated

by the Wilkens model is also valid for edge dislocations and curved dislocations.

Wilkens (1978) introducedM∗, the dislocation arrangement parameter, which is a dimensionless pa-

rameter:

M∗ = R∗
e
√

ρ (2.60)

TheM∗ parameter characterizes the dislocation arrangement:

• if the value ofM∗ is small, the correlation between the dislocations is strong

• if the value ofM∗ is large, the dislocations are distributed randomly in the crystallite

Fig. 2.10 shows two dislocation configurations: in the first the dislocations are strongly correlated

and the value ofM∗ is small and in the second the correlation is weak andM∗ is large. Fig. 2.11

presents the strain profile for fixedρ and variableM ∗ values.

It is noted that the Fourier transform given by the Wilkens model is real, this means that its inverse

Fourier transform, the strain intensity profile is symmetric, which is not always fulfilled in case of

real measurements, e.g. in single crystals with dislocation cell structure, the line profiles can be

asymmetric. Several different dislocation configuration can produce asymmetric broadening of the

profiles (Ungár et al., 1984; Mughrabi et al., 1986; Gaál, 1973, 1976, 1984). In Ungár et al. (1984)

and Mughrabi et al. (1986) authors propose a special cell-wall structure for dislocations: a matrix

structure where the dislocation density in the dislocationwalls is significantly larger (so the material

is harder) than in the cell interiors. This model is called “Mughrabi’s composite model”. In section 5.2

an implementation of this model for X-ray line profile analysis is presented. Gaál developed a model

for a far more general distribution of dislocations, in which a configuration of polarised dislocation

dipoles leads to asymmetric strain broadening (Gaál, 1973,1976, 1984). It should also be noted that

not only strain broadening causes asymmetric broadening ofthe line profiles, but planar faults also

introduce asymmetry in the profile shape, for more details see section 2.4.
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Figure 2.10: Schematic representation of dislocation configurations and the corresponding strain pro-
file for small and large values of theM∗ parameter. They scale of the strain profiles is logarithmic.
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Figure 2.11: The shape of the strain profile for fixedρ and variableM ∗ values. It is noted that for
each profile thesvariable is normalized by the FWHM value of the profile.
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2.3.2 Strain anisotropy: the concept of contrast factors

Strain anisotropy means that the broadening of the profiles show an anisotropic behaviour as a func-

tion of thehkl indices: the width of the profiles is not a monotonous function of the length of the

diffraction vector or its square, see for example the Williamson-Hall plot (Williamson & Hall, 1953)

in Fig. 3.1. This is explained by the anisotropy of the mean square strain:〈ε2
g,L〉 depends on thehkl

indices. This dependence is described by the contrast (or orientation) factorsC. The value of the

contrast factors depend on the elastic constants of the material and on the relative orientation of the

diffraction vector (g), the Burgers vector (b), the line vector (l) and the normal vector of the slip plane

(n) of the dislocations. The contrast factors of dislocationscharacterize the “visibility” of disloca-

tions in the diffraction experiments. For example ifbg = 0 for a dislocation, it has no, or almost no

broadening effect on the line profile. While the contrast factors can be determined experimentally for

single crystals, in a polycrystalline sample only the averages ofC can be observed. For these type of

materials, strain anisotropy can be well accounted for by the average contrast factors of dislocations.

See for example themodifiedWilliamson-Hall plot (Ungár & Borbély, 1996) in Fig. 3.2.

It has been shown by Ungár & Tichy (1999) that if the specimen is either untextured or if all possible

slip systems are equally populated, the average contrast factors can be expressed by the fourth order

polynomials of thehkl indices. For cubic crystals (Ungár & Tichy, 1999):

C = Ch00(1−qH2), (2.61)

where

H2 =
h2k2+h2l2+k2l2

(h2+k2 + l2)
2 . (2.62)

For hexagonal crystals (Ungár & Tichy, 1999):

C = Chk0(1+a1H2
1 +a2H2

2), (2.63)

where

H2
1 =

[h2+k2+(h+k)2] l2

[h2+k2 +(h+k)2+ 3
2(a

c)
2l2]2

,

H2
2 =

l4

[h2+k2 +(h+k)2+ 3
2(a

c)
2l2]2

,

(2.64)

and a
c is the ratio of the two lattice constants.

For orthorhombic crystals (Ungár & Tichy, 1999):

Chkl = Ch00
(

H2
0 +a1H2

1 +a2H2
2 +a3H2

3 +a4H2
4 +a5H2

5

)

, (2.65)
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where

H2
0 =

h4

a4
(

h2

a2 + k2

b2 + l2

c2

)2 ,

H2
1 =

k4

b4
(

h2

a2 + k2

b2 + l2

c2

)2 ,

H2
2 =

l4

c4
(

h2

a2 + k2

b2 + l2

c2

)2 ,

H2
3 =

h2k2

a2b2
(

h2

a2 + k2

b2 + l2

c2

)2 ,

H2
4 =

l2h2

c2a2
(

h2

a2 + k2

b2 + l2

c2

)2 ,

H2
5 =

k2l2

b2c2
(

h2

a2 + k2

b2 + l2

c2

)2
.

(2.66)

Here it is noted that a formally similar equation to (2.61) has been derived for random displacement

of atoms in elastically anisotropic cubic crystals by Stokes & Wilson (1944). However, it has not

been evaluated until Ungár and Tichy (1999) have rediscovered and further evaluated the correlation

between dislocations and strain anisotropy.

The constantsCh00 andChk0 are calculated on the basis of the crystallography of dislocations and

from the elastic constants of the crystal (see: Ungár et al, 1999). The parametersq, a1,a2, . . . ,a5

are the same for all reflections. These parameters are related to the edge or screw character of the

dislocations. In Ungár et al. (1999) the value of these contrast factor parameters were calculated for

different materials and for different type of dislocations. For example theq parameter were calculated

and plotted as a function of theAZ Zener constant for pure edge and pure screw dislocations. The

Williamson-Hall, MWP or CMWP procedure provide a measured value of theq parameter, which

usually falls between the values of theq parameter calculated for edge or screw dislocations. If the

value of the measuredq parameter is close to theq value calculated for edge dislocations, then the

character of the dislocations is edge, if it is close to theq value calculated for screw dislocations, then

the character is screw and if its value is close to the averageof the edge and screwq values, then the

character of dislocations is mixed. One can see from eq. (2.59) that the diffraction order dependence

of the strain Fourier–transform is given byg2C. A numerical code (the ANIZC program) has been

developed by Dr. Borbély (2003) for the calculation of the individual or average contrast factors taking

into account the elastic constants of the material, the lattice parameters and the relative orientations

of the l, b, n and g vectors. In addition to X-ray line profile analysis, the theory of dislocation

contrast factors can also be applied successfully for evaluating neutron diffraction experiments (see

e.g. Somogyvári et al., 2001).
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2.3.3 The Groma-Csikor strain function

The logarithmic approximation of the strain function for small L values given by eq. (2.56) was

determined by several authors: Krivoglaz (1969) and Wilkens (1970) derived it for special dislocation

distributions and Groma (1998) proved its validity for a general distribution of dislocations. This

means an intensity profile which decays asymptotically as
1
s3 (Groma, 1998).

Gaál (1984) determined the (complex) strain Fourier transform of a random configuration of polarised

screw dislocation dipoles. Groma & Monnet (2002) calculated A(L) corresponding to a distribution

of infinitesimal polarised dislocation dipoles and deriveda negative exponential function for the strain

Fourier transform. The strain Fourier transform calculated by Wilkens (1970) has the same asymptotic

behaviour for largeL values. This means a Lorentzian intensity profile.

Groma and Csikor proposed a simple interpolation function which connects smoothly these two func-

tions (Groma, 2003; Csikor & Groma, 2004):

〈ε2
g,L〉 =

(

b
2π

)2

π Chkl f GR−CS(L) , (2.67)

where:

f GR−CS(L) = W log

(

1+
X

|L|

)

+
Y

1+ZL2
, (2.68)

andW, X, Y andZ are parameters of the function. Actually the authors have derived this formula for

the P(τ) distribution function of the internal stresses caused by dislocations, which is analogous to

theI(s) intensity distribution used in X-ray line profile analysis.

ForL → 0 this function tends to:W log
X
|L|+Y and by comparing the expression of〈ε2

g,L〉 to that given

by Krivoglaz (2.57) the following equation is obtained forρdisl., the dislocation density, andRe, the

effective outer cut-off radius of dislocations:

W log
X

|L|
+Y = Cdisl.

h00 ρdisl. log
Re

|L|
(2.69)

ForL → ∞ the function takes the form:

WX
1

|L|
+

(

−
WX2

2
+

Y

Z

)

1

L2
. (2.70)

Since the profile function is area normalised, in other wordsA(0) = 1, the second term should disap-

pear:
(

−
WX2

2
+

Y

Z

)

= 0. (2.71)

This means, that the strain function depends only on three independent parameters, therefore one of

the four parameters can be eliminated, e.g.:Z =
2Y

WX2 .
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The first term in eq. (2.70) can be compared to the following expression depending onadip., the

dipole distance and onρdip. =
ρdisl.

2
, the density of dislocation dipoles:

WX
1

|L|
= Cdip.

h00 adip.ρdip.
1

|L|
(2.72)

From these equations, the following expressions are obtained for the values of the physical parameters

(Cdisl.
h00 andCdip.

h00 are the dislocation and dipole contrast factors, respectively):

ρdisl. =
W

Cdisl.
h00

, (2.73)

Re = X exp

(

Y

W

)

, (2.74)

adip. =
Cdisl.

h00

Cdip.
h00

2X, (2.75)

ρdip. =
W

2Cdisl.
h00

. (2.76)

It is noted that the Groma-Csikor strain function is implemented is the CMWP program package

[S14], however it is not always possible to determine so manystrain parameters from the measure-

ments, especially if size broadening is also present. In some cases, e.g. if the quality of the measured

data is low, or if the tails of the profiles cannot be measured because of the strong overlapping between

peaks, it is even not possible to determineρ andR∗
e accurately.

Eq. (2.68) provides a simple and flexible strain function, which can also be used to approximate

the Wilkens function if less independent parameters are used, e.g. by writing eq. (2.68) in the form

f GR−CS∗ (η) = W log

(

1+
X
|η|

)

+
Y

1+Zη2 , whereη =
1
2 exp

(

−1
4

)

L
R∗

e
, the parameters W, X, Y and

Z can be determined by fitting these parameters to the data points of the f ∗(η) Wilkens function.

The resulting function gives a perfect description of the Wilkens function, see the graphs of the

fitted f GR−CS∗ (η) function and the Wilkens function in Fig. 2.12 (also cf. Fig.2.9). The fitting

provided the following parameters:W = 1.14908,X = 1.4125,Y = 0.212226 and the value ofZ

is
2Y

WX2 = 0.18514. By using these parameters a good approximation of theWilkens function is

obtained which is even simpler than the following approximate formula given by van Berkum (1994):

f ∗(η) = − logη+
(7

4− log2
)

+
η2

6 − 32η3

225π if η ≤ 1,

f ∗(η) =
256
45π

1
η −

[11
24+

1
4 log2η

] 1
η2 , if η ≥ 1.

(2.77)
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Figure 2.12: f ∗(η), the Wilkens function (whereη =
1
2 exp

(

−1
4

) L
R∗

e
) and f GR−CS∗, the Groma-

Csikor strain function fitted to the data points of the Wilkens function. The fitting provided the
following parameters of the Groma-Csikor strain function:W = 1.14908,X = 1.4125,Y = 0.212226

andZ =
2Y

WX2 = 0.18514. This strain function gives a perfect approximation of the Wilkens function.

2.4 Planar faults [S18]

According to the numerical calculations of Mr. Levente Balogh, based on the theoretical work of

Warren (1969) and the numerical code developed by Treacy et al. (1991), the peak broadening due to

stacking faults for anhkl reflection in cubic fcc crystals can be expressed in the following form:

I st(s) = phkl
0 δ(s)+

phkl
1

1+

(

s−shkl
1

whkl
1

)2 +
phkl

2

1+

(

s−shkl
2

whkl
2

)2 +
phkl

3

1+

(

s−shkl
3

whkl
3

)2 , (2.78)

where the first term is given by a Dirac delta function, the others are broadened and shifted Lorentzian

functions, whkl
i are the FWHM values of the Lorentzian functions andshkl

i are the shifts of the

Lorentzian functions. Bothwhkl
i andshkl

i can be expressed as fifth order polynomials of theα j proba-

bility of planar faults, wherej stands for intrinsic or extrinsic stacking faults or twin boundaries:

whkl
1 = Whkl

1,1 α j +Whkl
1,2 α2

j +Whkl
1,3 α3

j +Whkl
1,4 α4

j +Whkl
1,5 α5

j , (2.79)

whkl
2 = Whkl

2,1 α j +Whkl
2,2 α2

j +Whkl
2,3 α3

j +Whkl
2,4 α4

j +Whkl
2,5 α5

j , (2.80)
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whkl
3 = Whkl

3,1 α j +Whkl
3,2 α2

j +Whkl
3,3 α3

j +Whkl
3,4 α4

j +Whkl
3,5 α5

j , (2.81)

shkl
1 = Shkl

1,1α j +Shkl
1,2α2

j +Shkl
1,3α3

j +Shkl
1,4α4

j +Shkl
1,5α5

j , (2.82)

shkl
2 = Shkl

2,1α j +Shkl
2,2α2

j +Shkl
2,3α3

j +Shkl
2,4α4

j +Shkl
2,5α5

j , (2.83)

shkl
3 = Shkl

3,1α j +Shkl
3,2α2

j +Shkl
3,3α3

j +Shkl
3,4α4

j +Shkl
3,5α5

j . (2.84)

The real and imaginary parts of theAst(L) Fourier transform ofI st(s) can be expressed as:

ℜAst(L) = phkl
0 + phkl

1 cos(2πshkl
1 L)exp(−πwhkl

1 L)+ phkl
2 cos(2πshkl

2 L)exp(−πwhkl
2 L)+

+phkl
3 cos(2πshkl

3 L)exp(−πwhkl
3 L) (2.85)

ℑAst(L) = phkl
1 sin(2πshkl

1 L)exp(−πwhkl
1 L)+ phkl

2 sin(2πshkl
2 L)exp(−πwhkl

2 L)+

+phkl
3 sin(2πshkl

3 L)exp(−πwhkl
3 L). (2.86)

It is noted, that since this Fourier transform is complex, the intensity profile (obtained by inverse

Fourier transforming this expression) is asymmetric. For each type of materials and stacking faults,

the values ofphkl
i , Shkl

i, j andWhkl
i, j are determined for differenthkl values by using the program DIFFAX

developed by Treacy et al. (1991). Thephkl
i , Shkl

i, j andWhkl
i, j parameter values have been evaluated for

fcc crystals for the first 15 reflections and for the three fundamental planar fault types by Mr. Levente

Balogh [S18].
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Chapter 3

The classical methods of X-ray line profile

analysis

This chapter is a summary of the methods of X-ray line profile analysis developed by other au-

thors. The information about the microstructure is in the width and the shape of the diffraction

profiles. Therefore the methods of X-ray line profile analysis can be divided into two main groups:

(i) breadth methods and (ii) whole profile or pattern fitting methods. A brief summary is given for

the Williamson-Hall breadth method and the Warren-Averbach Fourier procedure. The so called full-

profile and whole-pattern methods of other authors and the moment-methods are shortly discussed.

3.1 Breadth methods

The Williamson-Hall procedures are based on the different order dependence of the different physical

effects causing the broadening of diffraction profiles. In the case of spherical crystallites the size

broadening of profiles is constant and isotropic in the wholereciprocal space, while strain broaden-

ing increases with K, the reciprocal space coordinate. If strain is caused by dislocations, the strain

broadening is usually anisotropic and can be interpreted bythe concept of dislocation contrast (or

orientation) factors (Ungár & Borbély, 1996; Ungár & Tichy,1999). If planar or stacking faults are

present, the broadening is also anisotropic, however it does not increase with K. Here it is noted that

anisotropic crystallite shape can also introduce anisotropy in the broadening ([S4, S6, S5]; Scardi &

Leoni, 2002).

In theWilliamson-Hall procedure(Williamson & Hall, 1953), the∆K values defined as the FWHMs

(a) or integral breadths (b) of the measured profiles are plotted as a function of K. This is called the

Williamson-Hall plot. Such a plot gives a qualitative idea about the causes of peak broadening: if the

sample consists of small crystallites, the∆K value atK = 0 is high, while if the crystallites are large,

this value is negligible or small. Since atK = 0 no strain broadening is present, the corresponding∆K

value is due only to size broadening and according to eqs. (2.12) and (2.13) this∆K value is equal to
0.9
D (a) or

1
d (b), respectively. Here it is noted that this value can only be determined by extrapolation
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from the measured data points, since there is no Bragg peak atK = 0.

The slope of the curve gives qualitative information on the strength of the strain effect. If the effect is

strong,∆K increases strongly withK, while if the strain is weak, the∆K values are almost constant

or the slope is small. In order to estimate the dislocation density, the slope can also be interpreted

quantitatively, however it is better to use the Warren-Averbach (Warren & Averbach, 1952) method

(or a more advanced full profile fitting procedure, see e.g. the methods described in Chapters 4 and

5) for this purpose.

If strain is caused by dislocations, the widths of peaks showa typical anisotropic behaviour (see for

example for deformed polycrystalline copper sample Fig. 3.1) and themodifiedWilliamson-Hall

procedure (Ungár & Borbély, 1996) can be used to interpret strain in terms of dislocation contrast

factors. In this procedure the widths are plotted as a function of K
√

C or K2C leading to a consider-

ably smoother curve for materials containing dislocations, see for the same deformed polycrystalline

copper sample Fig. 3.2. The strain anisotropy parameters can be determined by using a simple linear

regression procedure. In previous papers (e.g. Ungár & Borbély, 1996), it is suggested that the widths

depend quasi-linearly onK
√

C. In recent papers [S4, S6], it is suggested that the widths depend

quasi-linearly onK2C. This is based on the Wilkens model (Wilkens, 1970), which isa very powerful

model for describing the strain properties of materials containing dislocations. The Wilkens strain

profile depend only on the powers ofK2C, so it is an even function ofK
√

C, therefore the widths

(FWHM or integral breadth values) of the peak profiles are also even function ofK
√

C. As long as

the basic assumptions of the Wilkens model are suitable for the investigated materials, the widths

can depend only onK2C and not onK
√

C. The modified Williamson-Hall plots have been plotted

as a function ofK2C for several materials, and it has been found that the data canbe very well fitted

linearly as a function ofK2C. For a demonstration, see for example Fig. 3.3 for the same deformed

polycrystalline copper sample as plotted in Figs. 3.1 and 3.2. However there is no guarantee that

the assumptions of the Wilkens model are always satisfied andfor some particular sample a linear

dependence onK
√

C is also conceivable. The Williamson-Hall methods use only the widths of the

profiles which is a very limited portion of the information inthe profiles. However, these simple and

powerful methods are well suitable to qualitatively investigate the materials.

32



0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12

∆K
 [1

/n
m

]

K [1/nm]

Figure 3.1: Classical Williamson-Hall plot for the integral breadths (deformed polycrystalline copper
sample). In this figure theβ values are plotted as a function ofK.
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Figure 3.2:ModifiedWilliamson-Hall plot for the integral breadths (deformed polycrystalline copper
sample). In this figure theβ values are plotted as a function ofK

√
C. The data points are fitted by

a parabolic curve, the fitted parameters of the parabola are also indicated. The value of the fitted
function atK = 0, ∆KS is the breadth of the pure size function.
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Figure 3.3:ModifiedWilliamson-Hall plot for the integral breadths (deformed polycrystalline copper
sample). In this figure theβ values are plotted as a function ofK2C. The data points are fitted by
a straight line, the fitted parameters of the line are also indicated. The value of the fitted function at
K = 0, ∆KS is the breadth of the pure size function.
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3.2 Fourier methods

In the Warren-Averbach procedure, the Fourier transforms of the profiles are analysed. In the clas-

sical Warren-Averbach plot(Warren & Averbach, 1952) the normalized Fourier transforms of the

measured peak profiles are calculated for equidistantly sampled values ofL in a range[0,Lmax] and

logA(L) is plotted as a function ofK2 for eachL value. The Warren-Averbach plot shows usually

a similar anisotropic behaviour as the Williamson-Hall plot. In themodifiedWarren-Averbach plot,

the measured data points can be plotted smoothly as a function of the scaling parameterK2C. It is

demonstrated in Figs. 3.4 and 3.5.

The values of the physical parameters can be determined as follows. Using eqs. (2.50), (2.51) and

(2.56), for small values ofL, the logarithm of the Fourier transform of the profiles can beapproxi-

mated as:

logA(L) ≈ logAS(L)−ρBL2 log

(

Re

L

)

(K2C), (3.1)

whereB =
πb2

2 . In this method, the parameters in the contrast factors are not fitted, but are fixed to

particular values (obtained for example by the modified Williamson-Hall procedure).

For each value ofLi , logA(Li) is fitted by the parabolic curveai + biK2C+ ciK4C2 and by plot-

ting the exponential of theai values as a function ofL, thesizeFourier transform is obtained. By

fitting the initial slope of the size Fourier transform (using linear regression) one can get the value of

L0, see Fig. 3.6.

The initial slopesbi divided by L2
i are plotted as a function of logLi , as shown in Fig. 3.7. By

using linear regression on the linear part of this data, the initial slope is equal toρB, from which

the dislocation density,ρ, can be determined. The other parameter of the regression line is equal to

−ρBlogRe from which the value ofRe can be determined.

The applicability of this method is limited by the fact that in some cases when plotting
bi

L2
i

as a

function of logLi , the curve has no linear part (the logarithmic formula is notvalid for largerL values

and even for small values ofL for materials containing dislocations a “hook-effect”, a deviation from

the logarithmic function can be observed, see e.g. Wilkens,1970), so the determination ofρ andRe

becomes very unstable.

When fitting logA(Li), the termciK4C2 indicates the presence of a higher order term in〈ε2
g,L〉.

This term is used only for describing the curve more accurately, the value ofci is not used at all.

35



-6

-5

-4

-3

-2

-1

0

0 5 10 15 20 25 30 35

lo
g

(A
(L

))

K2 [1/(nm)2]

L=0
L=2.84864
L=5.69728
L=8.54592
L=11.3946
L=14.2432
L=17.0918
L=19.9405
L=22.7891
L=25.6378
L=28.4864
L=31.335
L=34.1837
L=37.0323

Figure 3.4: Warren-Averbach plot (deformed polycrystalline copper sample). In this figure logA(L)
is plotted as a function ofK2 for eachL value. The anisotropic behaviour of the data points can also
be observed.
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Figure 3.5:ModifiedWarren-Averbach plot (deformed polycrystalline copper sample). In this figure
logA(L) is plotted as a function ofK2C for eachL value. The data points are fitted by parabolic curves,
which are also plotted. The logA(L) values atL = 0 correspond to the pure size Fourier transform.
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form, are plotted as a function ofL. The data points are fitted by a line and theL value of this line
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Figure 3.7: The plot for determiningρ andRe by using themodifiedWarren-Averbach method (de-

formed polycrystalline copper sample). In this figure the
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values are plotted as a function of log(Li).

The linear part of the data points is fitted by a line and the slope of this line gives the value ofρ and

the
b
L2 value of this line atL = 0 gives the parameterRe.
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3.3 Full profile fitting methods

Instead of the breadth methods, whole profile methods have been developed recently for the determi-

nation of microstructural parameters. In Chapter 4 the Multiple Whole Profile (MWP) fitting method

[S4, S6] will be presented in detail, which is in fact a Fourier method working on the whole (Fourier)

profiles. In the MWP method the Fourier transforms of the measured profiles for all reflections are

fitted simultaneously with ab-initio theoretical functions. Its theoretical basis for including the effect

of size and strain simultaneously is the convolutional equation (2.50) given by Warren & Averbach

(1952). According to the literature, some of the full profilemethods other than the MWP method are

briefly presented here:

1. Nusinovici & Rehfeldt-Osierski (1990) developed the program PROFILE which uses a method

called pattern decomposition. By using this program one candetermine interactively line profile

parameters by fitting the measured peaks or clusters of peakswith analytical functions. The

following analytical functions have been incorporated in their program: Voigt, pseudo-Voigt

and Pearson VII.

2. Louer & Audebrand (1999) developed the programProfFOU. In their method all reflections are

fitted simultaneously by using pseudo-Voigt functions. Themicrostructural parameters can be

determined by analysing the parameters of the pseudo-Voigtfunctions.

3. Dong & Scardi (1999) developed a similar program, calledMarqXwhich also provides individ-

ual profile parameters.

4. A similar approach is the method of Whole Powder Pattern Fitting (WPPF) developed by Scardi

and Leoni (1999). In this method an analytical function (e.g. a Voigtian) is adopted to fit the

experimental profiles and the profile parameters are connected by suitable conditions (Gaus-

sian and Lorentzian widths in the case of a Voigtian profile function) to the microstructural

parameters.

It is noted, that unlike these methods, the MWP method does not provide individual profile param-

eters, the microstructural parameters for size and strain effect are obtained directly from the fitting

procedure which is using ab-initio theoretical profile functions depending only on the microstructural

parameters.

3.4 Pattern fitting methods

As discussed in the previous section, most of the earlier whole profile fitting methods are based

on fitting the measured profiles by analytical profile functions. The most common fitting functions

are the Voigt, the pseudo-Voigt and the Pearson VII profile functions which are scaled to thehkl

anisotropy by ad-hoc scaling parameters, as suggested by Caglioti et al. (1958). These procedures

have several deficiencies: (i) the analytical profile functions usually do not describe the physical
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profiles correctly over the entire intensity range, they either fit around the maxima or in the tail regions,

but usually do not fit well the two regions simultaneously, (ii) there is no unique correlation between

the microstructural parameters of the materials and the profile parameters of the analytical functions.

Therefore the method of Convolutional Multiple Whole Profile (CMWP) fitting [S14] has been devel-

oped in which the profile functions are based and constructedby using fundamental physical princi-

ples applied to the different types and kinds of lattice defects. The CMWP method works directly on

the measured pattern instead of the Fourier transform of theseparated individual profiles (as it was the

case in the MWP method). The theoretical basis for includingthe effect of size and strain simultane-

ously is the convolutional equation (2.50) given by Warren &Averbach (1952), just like in the case of

the MWP method. In the CMWP method, a model based pattern is compared directly to the measured

pattern using a nonlinear least squares procedure. As the MWP method, the CMWP method does not

need individual peak parameters either, the microstructural parameters are determined directly from

the fitting procedure. For the details of the CMWP procedure,see Chapter 5.

In this section a few introductory comments are made about the literature, regarding some of the

pattern fitting methods other than the CMWP procedure.

1. Langford et al. (2000) proposed a pattern fitting method for nanocrystalline distortion-free

materials. They applied it successfully to the powder pattern of nanocrystallineCeO2 and the

size distribution function has been determined by fitting.

2. Scardi & Leoni (2002) developed a similar procedure whichis called Whole Powder Pattern

Modeling (WPPM) which uses also ab-initio theoretical functions, but does not account only for

the size effect, but also includes theoretical model for several sources of strain. Its theoretical

basis for including the size and strain effect simultaneously is also the convolutional equation

(2.50) of Warren & Averbach (1952).

3.5 Methods analysing the moments of the profiles

These single profile methods are based on the different asymptotic behaviour for the different sources

of broadening of the higher order moments of the scattered intensity. The first model was the variance

method proposed by Wilson (1962). Borbély and Groma (2001) proposed recently a very powerful

momentum method which deals correctly with measurements when both strain and size broadening

are present and also the level of the background can be determined in a physically correct way. It

uses a general theory for the asymptotic behaviour of dislocation induced X-ray peak broadening, it

does not depend on a particular model of dislocation arrangement like the Wilkens model, only the

generals−3 dependence of the tails of the intensity profile is used. The size broadening is accounted

for by thes−2 dependence of the size profile for the case of small crystallites. Unlike the multi-profile

fitting methods, this method can be applied to single profiles, especially for single crystals and the

dislocation density can be estimated in this case too. However, in order to evaluate the tails of the
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profiles accurately, this method requires the peaks to be measured with good statistics which is not

always available.

Thek’th moment of an intensity profileI(s) is defined as (Groma, 1998):

Mk(s) =

s
R

−s
SkI(S)dS

∞
R

−∞
SkI(S)dS

(3.2)

Borbély & Groma (2001) gave the following asymptotic expansion for the second and fourth order

moments:

M2(s) =
1

π2εF
s−

L

4π2K2εF
+

Λ < ρ >

2π2
log

(

s

s0

)

, (3.3)

M4(s)

s2
=

1

3π2εF
s+

Λ < ρ >

4π2
+

3Λ2 < ρ2 >

4π2

log2
( s

s1

)

s2
, (3.4)

whereΛ =
π
2g2b2C and εF is the area-weighted average crystallite size, for spherical crystallites:

εF =
3
2L0.

By plotting the moments as a function ofs one can readily see the type of broadening present in

the experiment and verify if the assumptions of small particle size or the presence of dislocations

apply. So, using this method one can easily visualize qualitatively the different sources of broaden-

ing as well as the size parameterεF and the strain parameters< ρ > or < ρ2 > can be determined

quantitatively by a fitting procedure.

An example is presented for ECAP deformed copper sample, thesecond order moment is plotted in

Fig. 3.8 and the fourth order moment divided bys2 is shown in Fig. 3.9. The moments (calculated by

using the measured profile of the 111 reflection) and the fittedtheoretical moment functions according

to eqs. (3.3) and (3.4) are plotted.
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Figure 3.8: The second order moment and the fitted theoretical function (ECAP deformed copper
sample). In the figures is denoted byq.

Figure 3.9: The fourth order moment divided bys2 and the theoretical function fitted between the two
markers (ECAP deformed copper sample). In the figures is denoted byq.
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Chapter 4

Determining microstructure by the Multiple

Whole Profile fitting method

The essential parts of this dissertation are the two methodsof X-ray line profile analysis: the Multiple

Whole Profile (MWP) [S4, S6] and the Convolutional Multiple Whole Profile (CMWP) [S14] fitting

procedures. The MWP procedure and a couple of problems solved by this method are described and

discussed in detail. It is shown that the MWP method enables to evaluate X-ray diffraction profiles in

terms of crystallite size and size distribution and dislocation densities and dislocation character.

4.1 The MWP method [S4, S6]

4.1.1 The principles of the method

The aim of the MWP procedure [S4, S6] is to describe the shape and the width of measured profiles

on the basis of the microstructure. The microstructural parameters, especially the crystallite size and

size distribution, the dislocation density and arrangement parameter and strain anisotropy, are refined

by a nonlinear least squares procedure, the Marquardt-Levenberg algorithm (Levenberg, 1944 and

Marquardt, 1963). Since it is working on individual profiles, the measured pattern first has to be

separated into single diffraction peaks. A special program, called MKDAT, was developed for this

separation procedure [S4].

4.1.2 Data preparation: profile separation using the MKDAT program

In the MKDAT procedure the selected overlapping region of the measured intensity pattern is fitted by

the sum of a background polynomial and simple analytical functions (Gauss, Lorentz, Pearson VII,

Pseudo-Voigt or Voigt). The peak positions, the peak intensities and the shape parameters are fitted

by using the nonlinear Marquardt-Levenberg least squares algorithm. For each reflection the sum of

the background polynomial and the analytical functions corresponding to the unrequired reflections is

subtracted from the measured data and only the peak profile corresponding to the required reflection

remains. The parameters of these analytical functions are not interpreted physically, these functions
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are used only to describe the shape of the overlapping region. This procedure is correct if the peak

shapes are close to the shape of the analytical functions used in the fitting. This may depend on the

microstructural properties of the materials, however practice has shown that in most cases these sim-

ple analytical functions are adequate to describe the shapeof the unrequested measured peaks. This

separation procedure should be used only for data preparation and this is not the procedure intended

for evaluating the microstructure. If the overlapping between the peaks is weak, the separation proce-

dure is simpler: in this case only the background (represented by a polynomial) is subtracted from the

measured data and there is no need for the above mentioned analytical functions, so the data and the

results of the MWP evaluation procedure are not influenced bythe shape of any analytical function.

Fig. 4.1 is an example for the separation of overlapping peaks.
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Figure 4.1: Typical example for the separation of strongly overlapping peaks in the case of carbon
black sample. The background polynomial is given asp0 + p1x and the measured data are fitted by
the functionp0 + p1x+ I1(x)+ I2(x)+ I3(x), where:I1(x), I2(x) andI3(x) are Pearson VII functions.
For the 100 peak, the peak profile is determined by subtracting bg(x), the sum of the background
polynomial and theother Pearson VII functions (004 and 101) from themeasureddata. After the
subtraction, the remaining data correspond to the pure, separated peak. The same procedure can be
applied to obtain the other peaks.

4.1.3 Data preparation: instrumental deconvolution usingthe MKDAT pro-

gram

If instrumental broadening is present, the peaks should be corrected for the instrumental effect too.

In the MKDAT program a simple deconvolution (based on the method of Stokes, 1948) is used for
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this purpose. In this procedure the Fourier transforms of the measured peak,Am(L), and the Fourier

transforms of the corresponding instrumental peak,Ai(L), are calculated. By using complex division,

Aph(L) =
Am(L)
Ai(L)

, the Fourier transform of the physical and pure microstructural peak profile is calcu-

lated. The instrumental free intensity profile can also be determined by calculating the inverse Fourier

transform ofAph(L).

4.1.4 Evaluation of X-ray diffraction profiles using the MWP program

Since the MWP method is a microstructural method, the peak intensities are not interpreted physi-

cally, so the measured intensity profiles and their Fourier–transforms, as well as the fitting theoretical

functions are normalized by their maximum values in the fitting procedure.

The theoretical basis of the microstructural analysis is the ab-initio theoretical Fourier–transform

given by equations (2.50), (2.58), (2.59), (2.61), (2.64),(2.36) and (2.47)-(2.49). There are two

possible approaches:

(i) Multiple Whole Profile fitting of the Fourier–transforms. In this procedure first themea-

sured intensity profiles are Fourier–transformed and normalized. Then all of them are fitted

simultaneously by the normalizedtheoreticalFourier–transform:

A(L) =
AS(L)

AS(0)
exp

[

−πb2

2
(g2C)ρL2 f

(

L
R∗

e

)]

, (4.1)

whereAS(L) andAS(0) are given by eqs. (2.36) and (2.37), respectively.

(ii) Multiple Whole Profile fitting of the intensity profiles. In this procedure first the measured

intensity profiles are normalized. Then all of them are fittedsimultaneously by the normalized

theoretical intensity function:

I(s) =
Fc(s)

Fc(0)
, (4.2)

whereFc is the Cosine Fourier–transform of (5.9), which is equivalent to the inverse Fourier

transform ofA(L), sinceA(L) is a real and even function:

Fc(s) = 2

∞
Z

0

A(L)cos(2πLs) dL. (4.3)

In the MWP fitting procedure all profiles are fitted simultaneously using the nonlinear Marquardt-

Levenberg least-squares algorithm, in which the Weighted Sum of Squared Residuals (WSSR) is

minimised. In this procedure the profiles are weighted uniformly. Here it is noted that the profiles

which correspond to the sameg value but theirhkl indices are not permutations of each other (e.g.

the333and511reflections in the case of fcc cubic materials) should be omitted from the evaluation

procedure, because their contrast factors are different and the theoretical Fourier–transform (2.59)

corresponds to only one contrast factor. If the intensity ratio of these coincident reflections is known,
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they can be included in the CMWP procedure, see Chapter 5 for more details. The theoretical func-

tions depend on thehkl indices and on the microstructural parameters:mandσ, the parameters of the

crystallite size distribution,ρ, the dislocation density,R∗
e the dislocation arrangement parameter and

the strain anisotropy parametersq (or a1, a2 for hexagonal crystals). These microstructural parameters

are the common parameters which connect the different reflections during the simultaneous fitting.

The difference between the theoretical profiles is in theirhkl dependence which is scaled byg2C de-

pending on theq (or a1,a2) anisotropy parameters. The values of the microstructuralparameters are

refined during the fitting procedure. If the ellipsoidal sizefunction is used, the value of the ellipticity

parameter,ε is refined too. The other parameters, the lattice constants,a (andc in the hexagonal

case), the absolute value of the Burgers-vector (b) andCh00 or Chk0 are input parameters of the fitting

procedure. Since the strain Fourier–transform depends on the productb2 ρCh00 (or b2ρChk0 in the

hexagonal case), the value ofb andCh00 (or Chk0) should be known in order to determine the value

of ρ. The value ofCh00 (or Chk0) depend on the elastic constants of the materials and on the edge or

screw character of the dislocations. However, in most casesthe type of dislocations is only known af-

ter the fitting procedure, by analysing the contrast factor parameters (q or a1, a2) which are the result

of the fitting procedure. In this case an estimated value ofCh00 (or Chk0) should be given during the

fitting procedure, and the value ofCh00 (or Chk0) should be determined according to the resultingq or

a1, a2 parameters. After this, the procedure should be repeated inorder to get the correct value forρ.

For the method of determining theCh00 (or Chk0) constants, see Ungár et al. (1999). If the value ofb

or Ch00 (Chk0) cannot be determined, the value of the microstructural parameterρ becomes uncertain

up to a scaling factor.

4.1.5 The steps of the MWP evaluation procedure

The function of the programevaluate is to evaluate the previously prepared data for the microstruc-

tural parameters using the method of Multiple Whole Profile fitting. The steps of the evaluation

procedure are:

1. Selection of the crystal system.The possible selections are: cubic or hexagonal. In the following

the parentheses indicate the case of hexagonal system.

2. Setting the value of the input parameters.The program prompts for the value of the lattice

constant(s), the absolute value of the Burgers-vector andCh00 (or Chk0).

3. Selection of the size function.The possible selections are: no size effect, spherical sizefunction

(default) or ellipsoidal size function.

4. Specification of the sampling of the Fourier–transform of the measured data.The number of

samples (default: 256) and the upper limit of sampling (the default is: five times the maximal

FWHM value of the Fourier profiles) may be specified.

5. Computing the normalized Fourier–transform of the measured data.This step is skipped if the

Fourier–transforms are available from the instrumental correction (see the description of the
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programMKDAT, sections 4.1.2 and 4.1.3) or from previous runs. The Fourier–transforms are

saved after their computation.

6. Specification of the initial values of the parameters and thelimit of stopping.The initial values

of the fitting parameters are always saved for subsequent runs. The limit of stopping is the con-

vergence criteria of the Marquardt-Levenberg algorithm: the fitting is stopped if the specified

maximal number of iterations (default: 5000) is reached or if the relative change of the WSSR

between two iteration steps is less than the specified limit (default: 10−9).

7. Selection of the method of fitting.The procedure of Multiple Whole Profile fitting can be carried

out by using the Fourier–transforms or the intensity profiles.

8. Fitting. In this step the values of the parameters are refined using thegnuplot program ex-

tensively modified for the MWP and CMWP procedures. The measured profiles and the fitted

theoretical functions are plotted side by side in order ofg and are replotted in each step of it-

eration, so one can trace continuously how the theoretical profiles approach the measured data.

The figure is saved after the fit converges. A typical plot for fitting the Fourier–transforms is

shown in Fig. 4.3.

9. Printing of solutions.In addition to the resulting parametersm, σ, ε, ρ, R∗
e, q (or a1, a2) the

dislocation arrangement parameterM∗ = R∗
e
√ρ (introduced by Wilkens) and the size parame-

tersD, d andL0 are printed too. These size parameters are defined by equations (2.12), (2.13)

and (2.16), and they are calculated from the pure theoretical size profile using the fittedm and

σ values.

10. Preparation of figures.If the Fourier–transforms were fitted, the program plots theintensity

functions too. If the intensity functions were fitted, the program plots the Fourier–transforms

too.

11. Saving the results and removal of temporary files.

It is noted that the actual fitting parameters used by the MWP and CMWP methods are denoted bya,

b, c, d, eand these parameters are related to the microstructural parameters by the following equation:

m = exp(b),

σ =
c√
2
,

q = a,

ρ =
2

π(bBURGERSd)2 ,

R∗
e =

exp(−1
4)

2e
,

(4.4)
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4.1.6 The MWP frontend

The programMKDAT and aWWW frontend for theevaluate program of the MWP procedure is available

on the web:http://www.renyi.hu/mwp. The programMKDAT was developed for UNIX systems,

and its goal is to prepare the measured data for the MWP evaluation procedure including the steps

of peak separation and instrumental correction as described in sections 4.1.2 and 4.1.3. The MWP

frontend provides a platform-independent interface of theprocedure: after uploading the previously

prepared data, the options of the fitting procedure can be selected (as described in section 4.1.5) and

the evaluation procedure can be started.

Fig. 4.2 shows the control panel of the MWP frontend. A detailed description of the frontend can be

found at the MWP documentation page:

http://www.renyi.hu/mwp/doc

Figure 4.2: The control panel of the MWP frontend:http://www.renyi.hu/mwp
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4.2 MWP application to deformed Cu [S4, S6] and ball milled

PbS [S9]

The MWP method was applied to polycrystalline copper samples of 99.98% purity deformed by ECA

(Equal Channel Angular) pressing and by removing a surface layer of 100µm with chemical etching

[S4, S6]. The results of the MWP fit can be seen in Fig. 4.3. The procedure provided the following

values for the microstructural parameters:m = 56nm, σ = 0.34, q = 1.64, ρ = 1.5 · 1015 1
m2 and

Re = 5.1nm [S4, S6].

Figure 4.3: Example for the MWP fit (copper sample). In this figure the Fourier transforms of the
measured and fitted profiles are plotted as a function ofL. The peaks corresponding to the different
hkl indices are plotted one after the other. TheL ranges corresponding to the different peaks are
independent, and extend from 0 to 200 nm for each peak.

The MWP procedure can be used to determine the microstructure of systematically prepared samples.

Such an example is the fcc galena: a series of natural PbS (galena) samples were ball-milled and in

some cases heat treated. These samples were studied by X-raydiffraction together with samples from

ancient Egyptian make-ups fabricated from galena (Walter,1999; Martinetto et al., 2000). The diffrac-

tion patterns were measured by the high resolution powder diffraction beam line, BM16 of ESRF in

Grenoble, France (Martinetto et al., 2000). By evaluating the X-ray patterns of the archeological and

systematically prepared samples a map of the microstructure was obtained. The microstructural pa-

rameters are considered as fingerprints of the state of the materials. By comparing the microstructural

parameters of the archeological samples to that of the ball-milled and/or heat treated galena samples,

the ancient manufacturing practices were traced back [S9].It was found that the ancient specimens
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have been gently crushed and no heat treatment was used or theheat treatment was carried out at

temperatures not higher than about 300◦C.

Fig. 4.4 shows the MWP fit of the archeological sample E23105.In this case the procedure provided

the following values for the microstructural parameters:m= 87nm,σ = 0.72, q = −4.5, ρ = 1.7 ·
1016 1

m2 andRe = 10nm.

Figure 4.4: The MWP fit of the archeological galena sample E23105. TheA(L) values of the measured
and fitted profiles are plotted as a function ofL.

PbS, galena is an ionic crystal, where it is not trivial if dislocations are created by plastic deformation

(Sprackling et al., 1976). For this purpose, Martinetto andcoworkers (2002) have carried out detailed

transmission electron microscopy (TEM) on ball milled PbS crystals. A typical TEM micrograph in

Fig. 4.5 shows the extended dislocation network in one of thedeformed PbS specimens (Martinetto

et al., 2002).
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Figure 4.5: PbS coarse particle bright-field TEM micrographof a dislocation network densely con-
nected.
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4.3 MWP application to Al-Mg alloys [S13, S14]

In [S13, S14] the effect of the nominal Mg content and the milling time on the microstructure and the

hardness of mechanically alloyed Al-rich Al-Mg solid solutions were studied.

A series of Al-Mg samples were prepared from high purity aluminium (99.9%) powder and high

purity magnesium chips (less than 2 mm thick and 5 mm long). The mechanical alloying was carried

out using a Spex8000 shaker miller at room temperature.

Aluminium with 6 wt.% magnesium alloys were milled for periods of 0.5, 1, 3 and 6 h. Additionally,

a series of Al - x wt.% Mg (x=0, 3, 6) were milled for 3 h at the same conditions to study the effect

of the nominal Mg content. The milled powders were compactedat a pressure of 1 GPa in air at

room temperature without any lubricant. The microstructure of both the ball-milled powders and

the compacted specimens were studied by X-ray line profile analysis. The diffraction profiles were

recorded by a Philips X’pert powder diffractometer using Cuanode and pyrolithic graphite secondary

monochromator. Step size and step time were 0.030 and 22 s/step, respectively. The X-ray diffraction

peak profiles were evaluated for the crystallite size distribution and the dislocation structure by the

MWP fitting procedure. The measured and the fitted Fourier transforms are shown in Fig. 4.6 for the

Al - 6 wt.% Mg specimen after ball milling for 0.5 h.

Figure 4.6: The MWP fit of the Al - 6 wt.% Mg specimen after ball milling for 0.5 h. TheA(L) values
of the measured and fitted profiles are plotted as a function ofL. The difference plot is also given at
the bottom of the figure.
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The volume-weighted crystallite size, the dislocation density, the hardness and the Mg concentration

as a function of the milling time and the nominal Mg content are plotted in Figs. 4.7 and 4.8, re-

spectively. For the Al - 6 wt.% Mg samples the Mg concentration increases with milling time up to

3 h. After 3 h there is no change in the Mg concentration. The dislocation density increases while

the crystallite size decreases rapidly with milling time upto 1 h. Between 1 and 6 h milling time the

dislocation density and the crystallite size do not change significantly, as shown in Fig. 4.7. In the

case where the nominal Mg content changes and the milling time period is fixed to 3 h, the Mg con-

centration in the solid solution and the dislocation density increase while the crystallite size decreases

and the crystallite size distribution becomes wider with increasing nominal Mg content, as shown in

Fig. 4.8.

The hardness of the compacted samples was also measured by depth-sensing Vickers indentation

tests. For hardness measurements the ball milled powders were compacted. To check the effect of

compaction on the microstructure, the parameters of the crystallite size distribution and the dislocation

structure of the compacted specimens were determined by X-ray diffraction peak profile analysis.

Comparing the microstructural parameters obtained beforeand after compaction it is concluded that

this procedure has only slight effects on the microstructure of the ball milled specimens. This means

that the hardness measured on the compacted samples characterizes also the mechanical properties of

the milled Al-Mg alloys.

By analysing the hardness values for the compacted specimens it was found that with increasing

milling time, the hardness increases up to 3 h due to the increasing Mg concentration, the increase of

the dislocation density and the decrease of crystallite size. Upon increasing milling time from 3 to 6 h

the hardness does not change significantly since neither theMg concentration nor the microstructure

changes. It is found that the Mg concentration in Al-Mg alloys has a considerable effect on the

defect structure. With increasing nominal Mg content of thepowder or increasing milling time, the

dislocation density increases and the character of dislocations is shifted toward edge type. These

changes can be attributed to the increase of the solute Mg concentration which increases the pinning

effect of Mg atoms on edge dislocations thus hindering theirannihilation. After 3 h milling the Mg

concentration in solid solution is much higher than the equilibrium solubility limit. The hardness

obtained for the mechanically alloyed Al 3 wt.% Mg specimen is in good correlation with those

predicted from the Hall-Petch relationship (Hall, 1951; Petch, 1953) determined for bulk samples in

other papers.
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Figure 4.7: The volume-weighted mean crystallite size in nanometers (open squares), the dislocation
density in 1014m−2 (solid squares), the Mg concentration in wt.% (open triangles) and the hardness
in 108 Pa (open circles) as a function of the milling period for the specimen of Al-6wt.% Mg nominal
composition.

Figure 4.8: The volume-weighted mean crystallite size in nanometers (open squares), the dislocation
density in 1014m−2 (solid squares), the Mg concentration in wt.% (open triangles) and the hardness
in 108 Pa (open circles) as a function of the nominal Mg content for the specimens ball milled for 3h.
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4.4 MWP application to Ti [S12, S21] and Si3N4 [S1, S6]

Hexagonal Ti samples were investigated in [S12]. Nanocrystalline titanium specimens were produced

by severe plastic deformation (ECA pressing) and X-ray diffractograms were measured by a Philips

X’pert diffractometer. The profiles were evaluated using the MWP method and the procedure pro-

vided the following values for the microstructural parameters: m = 38nm,σ = 0.49, q1 = −0.05,

q2 = 0.18,ρ = 8.6 ·1014 1
m2 andM = 6.5. The results of the MWP fit can be seen in Fig. 4.10.

The large dislocation density ofρ ≃ 9×1014 m−2 is confirmed by detailed high resolution TEM as

shown in the micrograph in Fig. 4.9 (Zhu et al., 2003).

Figure 4.9: (a) High resolution TEM image of a low-angle grain boundary with a misorientation
of 6.5◦, (b) Fourier-filtered image from the white frame in (a), showing the dislocation arrangement
in the grain boundary.

From the analysis of the measuredqparameter values,q(m)
1 andq(m)

2 , which are easily derived from the

a1 anda2 fitting parameters according to equationsq(m)
1 = a1 andq(m)

2 = − a1

2

3

(

c
a

)2 +a2 (Dragomir

& Ungár, 2002), the active slip system types can be concluded[S21]. In the ECAP deformed Ti

specimen it was found that the dominant active slip system types are〈a〉 and〈c+ a〉 [S11, S22], in

good correlation with TEM observations (Paton et al., 1970).

Another hexagonal samples were investigated in [S1, S6]. Commercial Si3N4 samples (powder LC12

from Starck Ltd, Germany) were investigated by X-ray diffractometry. The results of the MWP fit

can be seen in Fig. 4.12.

Fig. 4.11 shows the TEM micrograph of the Si3N4 particles and the particle size distributions mea-

sured either by TEM or X-ray line profile analysis. A good correlation between the two size distribu-

tions determined by two completely different methods can beseen.

The microstructural parameter values determined by X-ray line profile analysis are listed in Table 4.1.
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Figure 4.10: The MWP fit of the hexagonal Ti sample. TheA(L) values of the measured and fitted
profiles are plotted as a function ofL.

Table 4.1: Microstructural parameters obtained for nanocrystalline Si3N4 determined by the MWP
method

m [nm] σ ρ [1014 m−2] M a1 a2

20 (3) 0.65 (5) 7.5 (8) 2.1 3.54 -1.93

Figure 4.11: (a) TEM micrograph of the Si3N4 particles, (b) particle size distributions measured by
TEM and X-ray line profile analysis.
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Figure 4.12: The MWP fit of the hexagonal Si3N4 sample. TheA(L) values of the measured and fitted
profiles are plotted as a function ofL. The difference plot is also given at the bottom of the figure.
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4.5 MWP evaluation of carbon black samples by assuming ellip-

soidal crystallite shape [S4, S5, S6, S8]

The microstructure of hexagonal carbon blacks were investigated in [S5, S8]. Carbon black has the

turbostratic layer structure, therefore the evaluation could only be carried out by assuming that the

coherently scattering domains are of ellipsoidal shape flatcrystallites (Warren, 1965). The measured

X-ray profiles were evaluated using the MWP procedure with the additional assumption that the crys-

tallites are rotational ellipsoids (see section 2.2.4 for more details about the ellipsoidal size function).

Untreated, heat treated and compressed at 2.5 GPa carbon black specimens were investigated. The

measured X-ray profiles were evaluated using the MWP procedure and assuming ellipsoidal crystal-

lite shape. The value ofε, the ellipticity parameter is found between 0.5 and 1.2.

Figure 4.13: The MWP fit of carbon black sample. TheA(L) values of the measured and fitted profiles
are plotted as a function ofL. The difference plot is also given at the bottom of the figure.
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Chapter 5

Determining microstructure by the

Convolutional Multiple Whole Profile fitting

method

The CMWP procedure and a couple of problems solved by this method are described and discussed

in detail. It is shown that the CMWP method enables to evaluate X-ray diffraction patterns in terms

of crystallite size and size distribution, dislocation densities and dislocation character, without the

necessity to separate overlapping diffraction peaks or to deconvolute instrumental effects. It is shown

that the CMWP method makes it also possible to obtain the density and character of stacking faults

or twin boundaries. A special application of the CMWP procedure to solve the problem of unusual

narrowing of the first few diffraction peaks in ball milled fluorides is also presented.

5.1 The CMWP method [S14]

The Convolutional Multiple Whole Profile (CMWP) fitting procedure works as a computer program

developed for the determination of microstructural parameters from diffraction profiles of materials

with cubic, hexagonal or orthorhombic crystal lattices [S14], but works in principle, for all crystal

systems. Unlike the MWP method, which uses the Fourier transform of the separated profiles, the

CMWP method works directly on the measured intensity pattern and the separation of the profiles is

not needed. Another difference is, that there is no need to correct the measured data for the instru-

mental effect. The instrumental effect is added to the theoretical (physical) pattern by convolution,

thus avoiding numerical division of small numbers.

5.1.1 The principles of the method

The whole measured powder diffraction pattern is fitted directly by the sum of a background function

and profile funtions obtained as the convolution of ab-initio theoretical functions for size, strain and

planar faults and the measured instrumental profiles [S14]:
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Itheoretical= BG(2θ)+∑
hkl

Ihkl
MAXIhkl(2θ−2θhkl

0 ), (5.1)

whereBG(2θ) represents the background,Ihkl
MAX is the peak intensity, 2θhkl

0 is the 2θ value at the peak

center andIhkl is the theoretical profile for thehkl reflection, which can be expressed as the convo-

lution of Ihkl
instr., themeasuredinstrumental profile and ab-initio profile functions:Ihkl

size, the theoretical

size profile,Ihkl
disl., the theoretical strain profile for dislocations andIhkl

pl. f aults, the theoretical profile

function for planar faults:

Ihkl = Ihkl
instr. ∗ Ihkl

size∗ Ihkl
disl. ∗ Ihkl

pl. f aults (5.2)

This convolutional equation is based on equation (2.50) given by Warren & Averbach (1952). The

equation can be easily extended to include other physical effects as further sources of broadening. In

order to get realistic results, not all the effects should beincluded without consideration in the eval-

uation procedure, it is better to have some initial knowledge about the nature of the effects causing

the broadening and only the physically relevant effects should be included in the evaluation. There

are several possibilities to obtain this preliminary knowledge about the nature of the microstructural

effects. For example TEM observations can be used or the qualitative information provided by the

Williamson-Hall plot or the momentum method on one of the reflections can be used. In the calcula-

tion of the theoretical functions it is assumed that the crystallites have spherical or ellipsoidal shape

with lognormal size distribution and strain is caused by dislocations. Strain and size anisotropy are

taken into account by the dislocation contrast factors and the ellipticity of crystallites, respectively.

The mathematical formulae together with the dependence on the microstructural parameters of these

theoretical functions are given in Chapter 2. Note that in most cases the Fourier transform of the

profiles is expressed in an analytical form, which is favourable, since in the CMWP method, the

convolution is carried out in the Fourier-space and theIhkl profiles are obtained by inverse Fourier-

transforming the product of the theoretical Fourier transforms and the (complex) Fourier transform

of the corresponding measured instrumental profiles. Another possibility would be the usage of the

definition of the convolution:

( f ∗g)(x) =

∞
Z

−∞

f (t)g(x− t)dt, (5.3)

however, it is simpler and considerably faster for obtaining the theoretical intensity profile to directly

use the Fourier transforms provided by theory and performing an inverse Fourier transformation once

after the multiplication of the Fourier transforms, than inverse Fourier transforming all the theoretical

Fourier transforms and using the convolutional equation (5.3). Depending on the effects included,

the fitting procedure can provide the following microstructural parameters: median and the variance

of the size distribution, the ellipticity of the crystallites, the density and arrangement of dislocations,

the strain anisotropy parameters and the probability of planar faults. Since it is a microstructural
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method, theIhkl
MAX and 2θhkl

0 values are not modeled on the basis of the crystal structure,they are

treated simply as free fitting parameters. The fit should be carried out in two steps: in (i) theIhkl
MAX

and 2θhkl
0 parameters are fitted together with the microstructural parameters (a few steps of iteration

is usually enough to determine theIhkl
MAX and 2θhkl

0 parameters which is the goal of this step; in this

step the values of the physical parameters are not interpreted) and in (ii) the previously fittedIhkl
MAX and

2θhkl
0 parameters are fixed and only the physical parameters are refined.

The CMWP procedure treats the reflections which correspond to the sameg value but theirhkl indices

are not permutations of each other (e.g. the333and511reflections in the case of fcc cubic materials).

In this case both profiles are added to the model based, generated pattern and an intensity ratio is

introduced for this purpose (the total intensity at maximumis equal toIhkl
MAX in this case too). By

avoiding the need for the profile separation and instrumental correction the CMWP method is free

from the uncertainties due to these steps and it is much more adequate and superiour in a sense than the

MWP method for evaluating full powder patterns with overlapping peaks. However, if the overlapping

of the profiles is weak and they are measured separately on an instrument with negligible instrumental

effect, like a Nonius FR 591 special double crystal high resolution diffractometer (see e.g. Ungár et

al., 1998), it is more convenient to apply the MWP method. In the case of separately measured

profiles, before applying the CMWP method the profiles shouldbe linked into a pattern, the empty 2θ
regions between the peaks should be filled with artificial data and in this case the background of the

generated pattern usually has larger steps because of the different level of background of the different

peaks. This causes uncertainties when determining the background which is not present when using

the MWP procedure in these cases. The situation is the same for the evaluation of the measured

profiles of single crystals, where obviously no powder pattern can be measured. Another case when

the MWP method is more suitable than the CMWP when only the Fourier transforms of the profiles

are available. In the CMWP procedure the measured and model-generated pattern given by eq. (5.1)

are compared using the Marquardt-Levenberg nonlinear least squares algorithm (Levenberg, 1944

and Marquardt, 1963) and the fitting procedure provides the parameters of the ab-initio theoretical

functions as well as the refined theoretical powder pattern.Figs. 5.1 and 5.2 demonstrate the results

of the CMWP fitting procedure for Al-6Mg sample ball milled for 6 hours, the measured and the fitted

pattern are shown in both linear and logarithmic scale and their difference is shown in linear scale.

The results for the microstructural parameters are also indicated.

5.1.2 The JAVA frontend of CMWP

There are two main options to use the CMWP method: the first is to run directly the program

evaluate (which is part of the CMWP package) and the second is to use it via its WWW frontend.

Latter will be described in the next subsection. Theevaluate program is a frontend written in the
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Figure 5.1: The measured (solid lines) and theoretical fitted (dashed lines) intensity patterns for Al-6Mg
sample ball milled for 6 hours as a function of 2θ. The difference plot is also given at the bottom of the figure.
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Figure 5.2: The measured (solid lines) and theoretical fitted (dashed lines) intensity patterns for Al-6Mg
sample ball milled for 6 hours as a function of 2θ (plotted with logarithmic intensity scale). The results for the
microstructural parameters are also indicated.
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shell script languagezsh and it is enhanced with graphical functions written in theJAVA program-

ming language. Fig. 5.3 shows theJAVA panel of theevaluate frontend. All the parameters can be

adjusted in this panel and all the functions of the fitting canbe reached by pressing the appropriate

buttons. AnotherJAVA tool, themkspline program can be used for the interactive determination

of the base points of the background spline. See Fig. 5.4 for an example of the background spline

determined bymkspline.

Figure 5.3: TheJAVA panel of the CMWP frontend

Figure 5.4: Themkspline program of the CMWP package
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5.1.3 The WEB frontend of CMWP

The CMWP procedure can also be used via itsWWW frontend:

http://www.renyi.hu/cmwp .

This latter option has many advantages compared to the previous one:

1. it is platform-independent, only an internet connectionand a machine with a working web

browser is needed,

2. there is no need for installation,

3. the frontend is served by well configured and relatively fast machines,

4. the program and the code behind the frontend is continuously maintained.

Fig. 5.5 shows the control panel of the CMWP frontend, a more detailed description of the frontend

can be found at the CMWP documentation page:http://www.renyi.hu/cmwp/doc

Figure 5.5: The control panel of the CMWP frontend
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5.1.4 The CMWP evaluation procedure

Using the evaluation program (by runningevaluate or by using theWWW frontend) one can evalu-

ate the previously prepared and uploaded data for the microstructural parameters using the CMWP

method. The steps of the evaluation are the following:

1. Specification of the sample name.

2. Selection of the crystal system.The possible selections are: cubic (default), hexagonal oror-

thorhombic.

3. Setting the values of the input parameters.The value of the lattice constants, the absolute value

of the Burgers-vector,Ch00 (orChk0 in the case of hexagonal crystal system) and the wavelength

of the measuring instrument have to be specified.

4. Specification of the instrumental profiles.If instrumental profiles are available, the inclusion of

the instrumental effect can be selected and the name of the instrumental profiles directory can

be specified.

5. Determining the background.The base points of the background spline should be given inter-

actively by using themkspline program.

6. Peak searching.In this step the indices, the centers and the maximal intensities of all peaks

should be determined.

7. Specification of the interval used for fitting and plotting.Here can be specified the lower and

upper limit of the interval used for fitting and plotting (in 2θ degrees).

8. Selection of the size function.The possible selections are: no size effect, spherical sizefunction

(default) or ellipsoidal size function.

9. Specification of the sampling of the theoretical Fourier transforms.The Alim amplitude ratio

limit of the normalized theoretical Fourier transforms canbe specified, see section 5.1.6 for

more details. It is noted here that this limit should be specified only in case if no instrumental

profiles are available.

10. Specification of the sampling of the simulated powder pattern data. The value ofN1, N2 and

the profile cutting parameter should be specified here. For the details of the meaning of these

parameters see sections 5.1.7 and 5.1.8.

11. Specification of the initial values of the parameters.The initial values of the fitting parameters

have to be specified. They are always saved for subsequent runs. There is an option for fixing

the value of any parameter, which means that the value of thatparameter will not be refined

during the fitting procedure. Fixing the value ofd · e means that the value of the parameter

M∗ is fixed. This option can be used if the program enters into an asymptotic minimum (the
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values ofρ andR∗
e tend to infinity and zero, respectively, and the asymptotic standard errors

of the parametersd ande become extremely large, larger than 100%). The scales of thefitting

parameters can also be specified here.

12. Peak parameter refinement and weighting.Here the refinement of the peak positions and peak

intensities can be chosen. If the peaks have very different intensities, you can choose here to

use weights in the fitting algorithm (see section 5.1.10 for more details about the weighting

algorithm).

13. Fit control. The limit of stopping is the convergence criterium of the Marquardt-Levenberg

algorithm: the fitting is stopped if the specified maximum number of iterations (default: 200)

is reached or if the relative change of the WSSR between two iteration steps is less than the

specified limit (default: 10−9).

14. Fitting. In this step the values of the parameters are refined using thegnuplot program exten-

sively modified for the MWP and CMWP procedures. The measuredand the fitted theoretical

pattern are plotted and are replotted in each step of iteration, so one can trace continuously how

the theoretical pattern approaches the measured data. The figure is saved after the fit converges.

A typical plot for fitting is shown in Fig. 5.2.

15. Printing of solutions.The resulting physical parametersm, σ, ε, ρ, R∗
e, q (or a1, a2), α together

with the dislocation arrangement parameterM∗ = R∗
e
√ρ and the size parametersd andL0 are

printed.

16. Preparation of figures.The program plots the measured and theoretical fitted patterns together

with their differences in linear scale and the data is saved in a file containing 4 columns: 2θ, the

measured intensities, the fitted intensities and their difference. A plot with logarithmic scale is

also created.

17. Saving the results and removal of temporary files.

5.1.5 Determining the background

The background functionBG(2θ) is given by an analytical function.

By giving the list of the relevant base points of the physicalbackground, the background func-

tion is determined as the interpolatedcubic splinecorresponding to the specified base points. Fig.

5.6 shows an example for the spline background. The base points are indicated in Table 5.1. Fig. 5.4

shows the spline background of a real sample.

Another possibility is to use a sum ofLegendre polynomialsas the background. In this case, the

coefficients must be specified. The Legendre polynomials areorthogonal functions, so there is no

dependence between the coefficients.
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x y
30 120
40 420
60 320
65 520
70 580
93 670

Table 5.1: The base points for the example spline background.
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Figure 5.6: Example for a cubic spline, which can be used as background. As it can be seen, the
spline goes through the points very smoothly.
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5.1.6 Sampling of the Fourier transforms

In the CMWP procedure the sampling of the Fourier transformsdepends on whether instrumental

broadening is present or not.

• If there is no instrumental effect, the Fourier transforms are evaluated with an arbitrary precision

specified by the user of the program. The sampling of the theoretical Fourier transform is

determined byAlim, an amplitude ratio limit: for each reflection, the normalized theoretical

Fourier transform is calculated with equidistant samplingfrom L = 0 to Lhkl
max, whereLhkl

max is

defined by the following equation:
A(Lhkl

max)
A(0)

= Alim.

• If instrumental profiles are available, the sampling of the theoretical Fourier transforms depends

on the Fourier transform of the measured instrumental profiles. Since the measured instrumen-

tal profile is represented by a set of numerical data which terminates at a finite 2θ value, its

Fourier transform is periodic. If the sampling of the instrumental intensity profiles is equidis-

tant and the intensity values are given in points with a distance of∆K instr., the period of the

instrumental Fourier transforms is
1

∆Kinstr.
. This period determines the maximumL value for

calculating the theoretical Fourier transforms: it has no sense to calculate the theoretical Fourier

transform above this value and include the other maxima of the instrumental Fourier transform

in the convolution. Therefore, the Fourier transforms are calculated with equidistant sampling

from L = 0 to Lhkl
max, whereLhkl

max is theL value whereAhkl
instr., the Fourier transform of the mea-

sured instrumental profile has the first minimum value. This value is determined as follows:

the (complex) instrumental Fourier transform,Ainstr.(L) is calculated fromL = 0 by increasing

L with small steps and in each point the integralIint(L) =
L
R

L′
=0

|Ainstr.(L
′
)|dL

′
is calculated and

the calculation is stopped ifIint(L) exceedsIinstr.(0) = IMAX
instr. , the maximum intensity value of

the instrumental profile. The so obtainedL value is corresponding approximately to the sec-

ond maximum ofAinstr.(L), so the correct value forLhkl
max is half of this L value (where the

instrumental Fourier transform has its first minimum value).

Fig. 5.7 shows the Fourier transform of a measured instrumental profile, the periodic function

is plotted until its second maximum value. The period of thisfunction is 1526 nm, which is in

good agreement with the sampling of the measured instrumental profile: the instrumental peak

is measured in equidistantly sampled points:∆K = 0.00065
1

nm, so the calculated period of the

Fourier transform is:LNY QUIST=
1

∆K = 1538nm.

Depending on the value ofLhkl
max, the number of Fourier samples is:

NFT = 2Lhkl
max∆KP, (5.4)

where:

∆KP =
2

λ

[

sin

(

2θB+P

2

)

−sin

(

2θB

2

)]

, (5.5)
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and the profile cutting parameter is denoted byP and the 2θ value of the peak center is denoted by

2θB. So by using this sampling the Fourier transforms are calculated equidistantly at points with a

distance of∆L =
Lhkl

max
NFT

=
1

2∆KP and the period of the inverse Fourier transform is
1

∆L = 2∆KP. This

means that the peak intensity profile has minimums at the pointsKB±∆KP (whereKB =
2sinθB

λ ) and

it is cut at these points. IfP is small, this means that it is cut approximately at the points 2θB±P.
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Figure 5.7: The absolute value of the Fourier transform of aninstrumental profile as a function ofL.
It is plotted fromL = 0 until its second maximum value.

5.1.7 Sampling of the intensity patterns

In the least squares algorithm, the value of the theoreticalintensity pattern is required at the 2θ values

of the measured pattern data. However, since the measured pattern can contain many data points,

by calculating the theoretical pattern only at relevant points and by using simple linear interpolation

between these points, considerable speed-up can be achieved in the evaluation procedure. These rel-

evant points are determined by two parameters:N1 is a parameter which represents an equidistant

sampling in the measured 2θ range and the theoretical pattern is calculated in additional positions

whose number isN2. These points are selected around the measured peaks using the following algo-

rithm:

1. the measured 2θ range is divided intoN1 equidistant sub-intervals.

2. in each sub-interval additional points are added equidistantly where the theoretical pattern is

also calculated. The integral of the background stripped measured pattern is calculated for
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the n-th sub-interval. Denoting this integral byIn and the whole area under the background

stripped measured pattern byIpat, the number of the additional sampling points added in the

n-th sub-interval are:N2
In

Ipat
.

So the total number of sampling points is:N1+N2.

5.1.8 The profile cutting parameter

The theoretical intensity profiles are calculated only in the points corresponding to the sampling

determined byN1 andN2 (see the previous section for the details). Since the inverse Fourier transform

is also periodic, the profiles cannot be calculated in the entire 2θ range, and the usage of a cutting

parameter is necessary. It is noted that the inverse Fouriertransform is periodical inK only and not

in 2θ, this is the reason why the cutting is performed inK and not in 2θ. The profiles are evaluated

only in the proximity of∆KP of the corresponding Bragg positions, where P is the “profilecutting

parameter” and∆KP is defined by eq. (5.5). As we have seen in section 5.1.6, the period of the inverse

Fourier transform is two times∆KP, so it has a minimum value at the distance of∆KP, where it is

cut. The theoretical intensity pattern is put together fromthe background and the theoretical intensity

profiles sampled in the manner described above.

5.1.9 Instrumental profiles

In the CMWP procedureIhkl
instr., the measured instrumental profiles corresponding to thehkl indices are

used directly. The ideal sample for measuring the instrumental profiles has the following properties:

1. it should possibly have a large number of well separated Bragg reflections in the whole investi-

gated 2θ angular range.

2. it should be strain free with a large enough grain size in order to avoid size broadening, this

way it shows only the instrumental properties.

These conditions are more-or-less well satisfied in the caseof LaB6 specimens provided by the Na-

tional Institute of Standards and Testing (NIST). The CMWP evaluation program selects automati-

cally the nearest instrumental profile to each of the peak center of the evaluated pattern. Since the

overlapping between the peaks of the instrumental patternsis negligible, it is easy to separate the

spectrum (e.g. with the programMKDAT, see section 4.1.2 for more details). Fig. 5.8 demonstratesthe

angular dependence of the instrumental broadening measured on the high resolution powder diffrac-

tion beam line, BM16 of ESRF in Grenoble, France (Martinetto, 2000). Fig. 5.9 shows a part of the

instrumental pattern of a Philips X’Pert powder diffractometer measured onLaB6 sample.
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Figure 5.8: The FWHM values of the instrumental profiles measured on the high resolution powder
diffraction beam line, BM16 of ESRF in Grenoble, France, as afunction ofK for Si and NaCl samples.
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Figure 5.9: Part of the instrumental pattern of a Philips X’Pert powder diffractometer measured on a
LaB6 sample.

70



5.1.10 Weighting algorithms

Without proper weighting the least squares algorithms are strongly influenced by the points with

largey values (these points are overweighted). If the difference between they values is significant,

the usage of weighting is justified. In the MWP method the profiles are normalized, so there is no

need for weighting. In the CMWP method the intensity of the measured peaks can be different by

orders of magnitude.

The intensity maxima decrease with 2θ since the atomic scattering factors decrease with 2θ and, on

top of that, the structure factor can also cause significant differences in the peak maxima. A further

effect can be caused by texture. The CMWP program offers to use appropriate weighting if needed

in order to take into account the peaks with smaller intensity maxima. In the least squares method

the weights are usually 1/y2. A special weighting is used for the CMWP procedure in which the

profiles are weighted uniformly (provided that the overlapping between the peaks is weak), however,

the smaller peaks have larger weights. The weights are generated from the maximum intensity values

according to the equation:

wi(2θi) = max{IMAX
j ,where|2θi −2θ j | < P}. (5.6)

In this equation theIMAX
j intensities are the background-stripped peak intensities, 2θ j are the peak

centers andP is the profile cutting parameter. The actual weights used in the least squares procedure

are the
1

w2
i

values.

Fig. 5.10 shows the intensity pattern and the correspondingwi values for aCdF2 sample ball milled

for 30 minutes as a function function of 2θ. By using these weights, the results provided by the

CMWP procedure are in better correlation with the results ofthe MWP procedure, where the peaks

are also uniformly weighted. It is noted that due to the different weighting algorithms, a difference

is expected between the results of the MWP method on the intensity profiles, the results of the MWP

method on the Fourier transforms and the results of the CMWP method. The usage of the weights

1/y2 is also possible in CMWP, however this is not optimal if the level of the background is elevated.

5.1.11 Interpretation of the errors of the fitting parameters

In the least squares procedures the errors of the fitting parameters are usually given by their confi-

dence levels. In the fitting algorithm ofgnuplot (which is used by the MWP and CMWP procedures

also) the error estimates of the parameters are given ratherthan confidence intervals. These error es-

timates are calculated from the variance-covariance matrix after the final step of the iterations. These

estimates are the so called “asymptotic standard errors” (which are given by the programgnuplot

at the end of the fitting). They are calculated as the standarddeviation of each parameter. It should

be noted, that these asymptotic standard errors are usuallyover-optimistic and therefore should not

be used instead of the confidence levels. However, these asymptotic standard errors can be used as a

qualitative measure of the fit.
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The programgnuplot also gives a correlation matrix, which indicates the correlation of the parame-

ters in the region of the solution. The meaning of the elements of the correlation matrix is: if the value

of a parameter is changed, in this way increasing the WSSR, does the changing of the other parameter

compensate? The elements in the main diagonal elements are always 1 (they correspond to autocor-

relation) and if all parameters were independent, all otherelements would be nearly 0. Two different

parameters which completely compensate each other would have an element of unit magnitude, their

sign is depending on whether the relation is proportional orinversely proportional. If the magnitudes

of the non-diagonal elements are small, it means that the estimates of the standard deviation of each

parameter are close to the asymptotic standard error given by gnuplot.

5.1.12 Convergence and numerical stability

By using the Marquardt-Levenberg nonlinear least squares algorithm MWP and CMWP tries to find

the minimum value of WSSR in a multi dimensional parameter space (the dimension is denoted byn

and it is the number of the fitting parameters). In the nonlinear Marquardt-Levenberg algorithm the

gradient vector (whose components are the partial derivatives of WSSR as a function of the fitting

parameters) is calculated and the parameter values are modified according to the direction of the

gradient vector and a step parameter calledλ. In order not to jump over the minimum - which would

be the solution - the step is modified adaptively, i.e. after each step of the iteration,λ is either

multiplied or divided by a numerical factor and, if the WSSR is better in the new point, the new value

for λ is accepted. Depending on the properties of thisn-dimensional surface, finding the physical

minimum is not a trivial problem since local (non-physical)minimums can also be obtained. If this

surface has a sharp minimum there is usually no problem. However if it is flat, there is a chance to find

an inappropriate minimum. By changing the initial values ofthe parameters and examining the value

of WSSR and the residuals corresponding to the final solutionone can try if the solution corresponds

to the absolute minimum or not.

In the following an example will be presented for the examination of the stability of the solution by

running systematically selected fittings starting from different initial values of the parameters. Since

practice has shown that in some cases it is difficult to get a solution for the dislocation parameters,

the stability of the parametersd andewill be examined (d andeare related to the dislocation density

and effective outer cut-off radius of dislocations, respectively).

Table 5.2 shows the examination of the solution of the CMWP fitfor SrF2 sample ball milled for

30 minutes: the solution parameters are indicated for different initial values of the parametersd and

e (the initial value of the other parameters was always the same: a = −1.3, b = 1.7 andc = 1.3).

It can be seen that the solution for this sample is well definedand unique: it finds approximately

the same minimum starting from a wide range of the initial parameter values. However, at the same

time, by using inappropriate values for the parameters usedfor the sampling of the theoretical Fourier

transforms and/or the intensity pattern (e.g. for the profile cutting parameter) it is possible to get an

unstable behaviour for the solution even in the case of the same sample.

Fig. 5.11 shows the WSSR corresponding to the solution of theCMWP fit for the sameSrF2 sample
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Figure 5.10: The measured pattern (solid lines) and the correspondingwi values used in the CMWP
algorithm (dashed line) forCdF2 sample ball milled for 30 minutes, as a function of 2θ. The actual

weights are the
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values.

dini eini asol bsol csol dsol esol WSSR
4 0.5 -0.8062 (13%) 2.054 (1.6%) 1.204 (0.72%) 19.5 (21%) 0.87 (43%) 2.6698
6 0.4 -0.7934 (14%) 2.069 (1.4%) 1.200 (0.63%) 15.8 (17%) -1.33 (34%) 2.6709
8 0.3 -0.8062 (13%) 2.054 (1.6%) 1.204 (0.72%) 19.5 (21%) -0.87 (43%) 2.6698
10 0.25 -0.8062 (13%) 2.054 (1.6%) 1.204 (0.72%) 19.5 (21%) -0.87 (43%) 2.6698
20 0.2 -0.8156 (13%) 2.044 (1.7%) 1.207 (0.74%) 21.5 (18%) 0.71 (37%) 2.6696
30 0.15 -0.8331 (13%) 2.028 (1.4%) 1.211 (0.62%) 24.4 (5.7%) 0.55 (12%) 2.6702
40 0.1 -0.8597 (13%) 2.005 (1.4%) 1.218 (0.61%) 28.1 (4.4%) 0.41 (8.9%) 2.6724
60 0.08 -0.8323 (13%) 2.028 (1.4%) 1.211 (0.61%) 24.4 (5.6%) 0.55 (11%) 2.6702
80 0.05 -0.8331 (13%) 2.028 (1.4%) 1.211 (0.62%) 24.4 (5.7%) 0.55 (12%) 2.6702
100 0.03 -0.8605 (13%) 2.005 (1.4%) 1.218 (0.61%) 28.1 (4.5%) 0.41 (9.1%) 2.6724

Table 5.2: The initial values (dini andeini), the solution parameters (asol, · · · ,esol) and the WSSR
values obtained as the solution of the CMWP fit forSrF2 sample ball milled for 30 minutes. The
initial value of the other parameters was always the same:a = −1.3, b = 1.7 andc = 1.3. It is noted
that the WSSR values have to be multiplied by a factor of 107. The asymptotic errors of the fitting
parameters are also indicated in parentheses.
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as a function of the value of thed parameter (this value was fixed during the fitting and only the

values of the other parameters were refined). It can be seen that it has a flat minimum value around

d = 20. However if the same type of curve for a sample is monotonously increasing (so its derivative

is always positive and does not reach zero at a particulardsol value), when refining all parameters

instead of a well defined solution, the parameterd approaches asymptotically zero (and at the same

time e approaches asymptotically infinity). By fixing the value ofde (which means that the value

of M, the dislocation arrangement parameter is fixed) a solutioncan be obtained forρ, however it

is better to solve the problem without this (ad-hoc) restraint. These problems have several possible

sources:

• the incorrect choice of the theoretical function is a possible cause

• the incorrect choice of the sampling parameters of the theoretical Fourier transform or theoret-

ical intensity pattern should also be avoided

• the noise and low quality measurements have negative effects on the evaluation

In section 5.5 a solution for a similar stability problem will also be presented: by using a more

appropriate physical model for the size broadening of thesesamples the unstable behaviour of the

dislocation parameters can be eliminated.
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Figure 5.11: The WSSR corresponding to the solution of the CMWP fit for SrF2 sample ball milled
for 30 minutes, as a function of the value of thed parameter (which was fixed during the fitting and
only the value of the other parameters were refined).
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5.2 Modeling asymmetric diffraction profiles

In this section a method suitable for modeling asymmetric line profiles is presented. It is based on

Mughrabi’s composite model(Ungár et al., 1984; Mughrabi et al., 1986) and an asymmetricstrain

profile is composed by the sum of two shifted strain profiles calculated by using the Wilkens model

(Wilkens, 1970). Theρ parameters of these functions correspond to the dislocation density in the

inner region of the cell and in the cell’s wall, respectively. In this procedure only a single peak is

analysed and the size broadening is neglected. The evaluation procedure consists of the following

steps:

1. Correction of the peak’s center and normalization: The center of gravity of themeasured

intensity profileIm(s) is defined as:

s=

∞
R

−∞
sIm(s)ds

∞
R

−∞
Im(s)ds

. (5.7)

Therefore the area normalized and centercorrectedintensity profile is given by the transform:

Ic(s) =
Im(s−s)
∞
R

−∞
Im(s)ds

. (5.8)

2. Evaluation using the symmetrized theoretical intensity profile: The size broadening of the

profiles is neglected, so the theoretical Fourier transformbecomes:

A(L, ρ, R∗
e) = exp

[

−πb2

2
(g2C)ρL2 f

(

L
R∗

e

)]

, (5.9)

SinceA(L) is real and even function ofL, its inverse Fourier transform, the theoretical intensity

profile is real and even function ofs:

I(s, ρ, R∗
e) = 2

∞
Z

0

A(L, ρ, R∗
e)cos(2πLs) dL. (5.10)

Note that the theoretical intensity functionI(s) is area normalized, since:
∞
R

−∞
I(s)ds= A(0) = 1.

In this stepIc(s), the area normalized and centercorrectedintensity profile is fitted byI(s−
s0
1, ρ, R∗

e), so the value of the parameterss0
1, ρ andR∗

e is refined.

3. Evaluation using the asymmetrical theoretical intensity profile:
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In this step, the theoretical intensity functionIas(s) is defined as:

Ias(s) = f1 I(s−s1, ρ1, R∗
e,1)+ f2 I(s−s2, ρ2, R∗

e,2), (5.11)

where:
f1 + f2 = 1

s1 f1 + s2 f2 = 0

f1ρ1 + f2ρ2 = ρ

(

R∗
e,1

) f1
ρ1
ρ ·

(

R∗
e,2

) f2
ρ2
ρ = R∗

e

(5.12)

The parametersρ andR∗
e are known from the previous step, so the parametersf2, s2, ρ2 andR∗

e,2

are determined unequivocally by the parametersf1, s1, ρ1 andR∗
e,1. In this stepIc(s) is fitted by

Ias(s), so the value of the parametersf1, s1, ρ1, R∗
e,1 is refined and the value of the parameters

f2, s2, ρ2, R∗
e,2 is calculated using equations (5.12).

Although the method presented here was developed for singleprofile analysis, it was presented

here, because the CMWP program package [S14] includes an evaluation program developed

for this procedure.
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5.3 CMWP application to Al-Mg alloys [S14, S16]

In [S14, S16] the CMWP fitting procedure is used for the evaluation of the X-ray diffraction patterns

of Al-Mg alloys prepared by mechanical alloying. The microstructural parameters determined by the

CMWP method were compared to the results obtained by the MWP fitting procedure. The aluminium-

magnesium samples were prepared and measured as described in section 4.3 and in [S13]. In [S14]

three samples were investigated, each after 3h ball-milling with nominal Mg concentrations 0, 3 and 6

at. %. The lattice constants of the ball milled samples were determined by the standard Nelson-Riley

method (1945). The Mg concentration in the solid solution was determined by using the slope in

Vegard’s law (Pool & Axon, 1952). The true Mg concentrationswere 0, 2.26 and 5.52 at. % for the

samples with nominal Mg concentrations 0, 3 and 6 at. %, respectively.

Figs. 5.12 and 5.13 show the X-ray diffraction pattern obtained on the Al-3 wt.% Mg powder after

3 h ball milling in linear and logarithmic intensity scales,respectively. The open circles represent

the experimental data. As it can be seen from the figure the main phase is the Al-Mg solid solution,

however, traces of Mg around the first reflection of Al-Mg can be observed in the logarithmic plot.

The solid line in Figs. 5.12 and 5.13 represent the model based, theoretical pattern fitted by the

CMWP procedure. The agreement between the the measured and the fitted patterns is satisfactory.

The severe plastic deformation during milling resulted in the formation of ultrafine-grained structure

(< x >vol=39 nm) with very high dislocation density (ρ = 44·1014m−2).

The microstructural parameters were determined for each sample by applying both the CMWP and

MWP fitting methods. It was found that the microstructural parameters obtained by the MWP fitting

method are in reasonable agreement with those determined bythe CMWP fitting procedure, as it is

shown in Table 5.3. The observed differences are due to the different weightings used in the MWP

and CMWP procedures.

Table 5.3: Microstructural parameters obtained by the MWP and CMWP procedures for ball milled
Al-xMg (x=0, 3, 6 wt.%) specimens

x [wt.%] Method m [nm] σ ρ [1014 m−2] M q
0 MWP 60 (6) 0.18 (2) 19 (2) 1.0 (2) 0.7 (1)
3 MWP 33 (3) 0.21 (3) 40 (4) 1.2 (2) 0.5 (1)
6 MWP 19 (2) 0.40 (3) 72 (6) 1.0 (2) 0.4 (1)
0 CMWP 73 (7) 0.10 (2) 12 (2) 1.1 (2) 1.3 (1)
3 CMWP 29 (3) 0.29 (3) 44 (4) 1.2 (2) 1.1 (1)
6 CMWP 26 (3) 0.13 (3) 100 (15) 1.3 (2) 0.7 (1)
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Figure 5.12: The measured and fitted patterns (fitted by the CMWP method) of the Al-3 wt.% Mg
alloy. In this figure the intensity values are plotted as a function of 2θ. The indices of reflections
are also indicated. The differences between the measured and fitted intensity values are plotted at the
bottom of the figure.
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Figure 5.13: The measured and fitted patterns (fitted by the CMWP method) of the Al-3 wt.% Mg
alloy (logarithmic intensity scale). In this figure the logarithm of the intensity values are plotted as a
function of 2θ. The indices of reflections are also indicated.
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5.4 CMWP application to nanocrystalline Cu containing planar

faults [S18]

The effect of stacking faults and twins on X-ray diffractionpatterns has been calculated numerically

by using the DIFFaX software (Treacy et al., 1991) for the first 15 Bragg reflections in fcc crystals

up to 20 % fault densities by Mr. Levente Balogh [S18]. It was found that the Bragg reflections

consist of up to 5 sub-reflections which are broadened and shifted to different extent according to

particularhkl conditions, for more details see section 2.4 and [S18]. Balogh has also shown that

the sub-reflections can be well described by Lorentzian profile functions over an intensity range of

about 4 to 5 orders of magnitude. It was further shown that this feature is in good correlation with

the fact that stacking faults or twin boundaries act as boundaries of coherently scattering domains

and that they cause homogeneous strain. In that sense faulting or twinning causes a kind of size

broadening associated with homogeneous strain. About 15000 sub-reflections were evaluated and

parametrized according to their FWHM and positions relative to the exact Bragg angles. The stacking

faults profile function defined by eq. (2.78) and the calculated parameter files were incorporated

into the CMWP software for evaluating planar faults together with dislocations and crystallite or

subgrain size distributions [S18]. Bulk nanocrystalline copper specimens were prepared by inert

gas condensation and hot compaction at Argonne National Laboratory (Ungár et al., 1998). They

are denoted asO2− IS, P2− IS, andN2− IS in the as-prepared state andP2−T andN2−C after

tensile and compression tests, respectively. By applying the CMWP procedure with the inclusion

of the stacking or twin faults effect the microstructure of these nanocrystalline copper samples were

evaluated. The twin density obtained by the CMWP procedure is increasing up to a few percents as

the grain size decreases. Fig. 5.14 shows the twin density asa function of the area averaged mean

crystallite or subgrain size for the different specimens. It can be seen that when the subgrain size is

larger than about 40 nm the twin density is close to zero, within experimental error. At subgrain-size

values smaller than about 40 nm the twin density increases sharply and reaches values up to 6%.

This means that in nanocrystalline Cu twinning becomes a substantial mode of deformation when the

subgrain size becomes smaller than about 40 nm.

5.5 CMWP application to ball milled fluorides [S17]

Nanocrystalline fluorides are important because of their usage as sensor materials. Homogeneous

nanocrystalline materials can be produced by ball milling and at the same time, the milling procedure

also introduces several types of strains. In [S17] 4 different types of fluorides produced by ball milling

for different milling periods were investigated by X-ray diffraction. About 20 diffraction patterns of

CaF2, SrF2, BaF2 andCdF2 fluorides produced by ball milling were measured by a D500 Siemens

high resolution powder diffractometer with incident monochromator. By applying the CMWP proce-

dure, the microstructural parameters for size and strain broadening were determined. In about half of

the cases, the measured and fitted diffraction patterns werein perfect agreement throughout the entire
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Figure 5.14: The twin densityβ as a function of the area averaged mean crystallite or subgrain size
〈x〉areafor the different specimens. Inert gas condensed and compacted specimens: O2-IS, P2-IS, P2-
T, N2-IS, and N2-C. Submicron grain-size samples deformed by ECAP: ECAP(a)open left triangles
and ECAP(b) open squares, respectively. The dashed line is to guide the eye. The solid vertical line
indicates the experimental uncertainty.
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2θ range. However, in the rest of the cases the first few reflections of the measured patterns were

significantly narrower than the fitted ones, calculated on theoretical basis. At the same time, also in

these latter cases, the rest of the reflections were in good agreement for the higher angular part of the

patterns consisting of about 15 profiles. It is worth to note,that in the cases when the above mentioned

differences between the measured and calculated patterns were observed, it was almost impossible to

obtain a physically realistic solution for the microstructural parameters, i.e. it was not possible to

determine the parameters of the strain effect: the solutionfor ρ, the dislocation density andRe, the ef-

fective outer cut-off radius of dislocations was asymptotic as described in section 5.1.12. In the cases

when the first few measured profiles were narrower than the calculated ones, this discrepancy were

interpreted by an X-ray optical interference effect [S17] similar to what was observed by Rafaja et al.

(2004) in nanocrystalline thin layers. The interference effect has been corrected successfully, either

by (i) excluding the affected profiles from the evaluation procedure or by (ii) assuming a diffraction

angle dependent apparent bimodal size distribution of crystallites [S17].

5.5.1 The interference effect

Rafaja et al. (2004) have observed recently an X-ray opticalinterference effect in nanocrystalline

thin film of Ti0.38Al0.62N. As it can be clearly seen in the Williamson-Hall plot in Figure 6 of

Rafaja et al. (2004), the broadening of the first few reflections (corresponding to the smallestg

values) is significantly smaller than the broadening of the other reflections. This means that the

apparent domain size corresponding to these peaks is increased due to an interference phenomenon,

consequently these peaks are narrowed. The other peaks corresponding to largerg values are not

affected by this interference effect, so their broadening corresponds to the real physical coherently

scattering domain size. As pointed out by the authors, the effect was present in the cases when the

following conditions were simultaneously present: (i) thecoherently scattering domain size was less

than about 5 nm, (ii) a texture was present in the sample and (iii) the absolute value of the diffraction

vector was small. In the following a simple interpretation of the interference effect is presented. Fig.

5.15 shows the reciprocal lattice spots of two adjacent crystallites rotated to each other by a relatively

small angle. The difference in their orientation also meansthat their reciprocal lattices are also rotated

to each other by this small angle. Due to the small size of crystallites, the reciprocal lattice points are

broadened (in the case of isotropic crystallite shape the extent of broadening is the same in each point).

If the crystallite size is small, the broadening becomes large and if the difference in orientation is also

small, the reciprocal lattice spots corresponding to smallg vectors can overlap. Due to the increase of

the coherently scattering region in the reciprocal lattice, the peaks corresponding to these points are

narrowed. In Fig. 5.15 the encircled reciprocal lattice-spot pairs #1 and #2 are overlapping, so their

peak profiles are narrowed and the others corresponding to largerg values (like spot pair #3) do not

overlap anymore, so their peak profiles are not influenced by this interference effect. Consequently the

coherently scattering domain size determined from these latter peaks corresponds to the appropriate

crystallite size. This is the simple and direct reason why this effect influences only the first few

reflections in a diffraction pattern, as can be seen in a direct way in Figure 6 of Rafaja et al. (2004).
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Figure 5.15: Schematic drawing for the interpretation of the interference effect. The dashed and the
dotted spots are the blown up reciprocal lattice nodes corresponding to two adjacent crystallites ro-
tated in orientation with respect to each other by a small angle. The orientations of the two crystallites
are indicated schematically by the dashed and dash-dotted arrows. The pairs of encircled diffraction
spots numbered #1 and #2 overlap, whereas those numbered #3 are well separated.
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Figure 5.16: Observed and fitted patterns ofSrF2 after 12 min of ball milling.

Figure 5.17: Observed and fitted patterns ofSrF2 after 40 min of ball milling.
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Figure 5.18: Observed and fitted patterns ofSrF2 after 60 min of ball milling.

Figure 5.19: Observed and fitted profiles of the 111 reflectionof SrF2 after 40 min of ball milling.

84



Figure 5.20: Evolution of the interference effect with milling periods for the 111 diffraction line of
SrF2 samples.

The measured and fitted patterns ofSrF2 samples corresponding to 12, 40 and 60 minutes of ball

milling periods are plotted in Figs. 5.16, 5.17 and 5.18, respectively. As it can be seen in Fig. 5.16,

the measured and the model based, theoretical patterns ofSrF2 ball milled for 12 minutes are in

perfect agreement throughout the entire 2θ range of the measurement. On the other hand, according

to Fig. 5.17, there is significant difference between the measured and fitted curves ofSrF2 ball milled

for 40 minutes at lower 2θ angles, the first few measured profiles are significantly narrower than the

fitted ones. Nevertheless, also in this case the agreement between the measured and fitted profiles

for 2θ angles larger than about 60◦ is satisfactory. After even longer milling periods, e.g. after 60

min ball milling, as can be seen in Fig. 5.18, a similar discrepancy can be observed between the

measured and fitted patterns as in the case of the 40 min ball milled sample, however, the differences

are definitely smaller, meaning that the effect is less pronounced in this case. As can be seen in Fig.

5.19 showing the measured and fitted profiles of the 111 reflection of SrF2 ball milled for 40 minutes,

far enough from the peak center the measured and fitted profiles coincide, so the problem cannot be

related to the incorrect determination of the background level. This suggests that either the shape of

the peak or the extent of broadening is incorrect. The evolution of the interference effect with milling

periods is shown in Fig. 5.20. It can be seen that the differences are increasing up to 40 min and start

decreasing at longer milling periods. The microstructuralparameters obtained by the CMWP fitting

procedure also show a discrepancy for the samples for which differences were observed. Instead of a

well defined solution for the parameters of the microstructure, the solution for the dislocation density
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and the effective outer cut-off radius of dislocations approaches asymptotically infinity and zero,

respectively, so without applying some artificial restraints (e.g. by fixing the value ofM) one can get

only a physically unrealistic solution. By omitting the first few reflecitions, the fitting procedure works

well for the rest of the profiles and gives a reasonable solution. The observed differences between the

measured and the model based, fitted patterns suggest the presence of a similar interference effect as

observed by Rafaja et al. (2004) in Ti0.38Al0.62N thin films.However, in the case of these fine loose

powder samples, there can’t be a strong orientational correlation (real texture) between the particles,

but a local orientational correlation (local texture) is possible between adjacent crystallites. If the

ratio of these locally textured particles is large enough, it is producing a similar interference effect

as the one observed by Rafaja et al. (2004). From this we can conclude that two main conditions

make the existence of this kind of interference plausible. (i) A fraction of the fluoride powder consists

of nanocrystalline particles. This condition is produced by ball milling. (ii) In this fraction of the

powder the orientation of adjacent particles is crystallographically not too far from each other, in

other words, there is a local texture in the powder. Since thelattice parameters of these fluorides are

relatively large, the first few diffraction spots are relatively close to the origin of reciprocal space,

meaning that this orientational correlation condition is not too strict. The orientational correlation

between adjacent crystallites can be caused by the Coulomb interaction present in these ionic crystals.

This can produce some kind of epitaxial interaction betweenadjacent crystallites resulting in a local

orientation correlation between them. In ball milled cobalt, for example, epitaxially touching particles

were observed by HRTEM (Yao & Thölén, 2000). For longer milling periods the milling procedure

enables coagulation and/or coalescence of smaller particles thus increasing the average crystallite size

and diminishing the magnitude of the interference effect.

5.5.2 Correcting for the interference effect

The angular dependence of the apparent size distribution inthe case of theSrF2 sample ball milled

for 40 min (where the interference effect is the most pronouncedly present) was examined as follows:

with fixed strain parameter values, the peaks were fitted individually and the lognormal size distribu-

tion parameters were determined for each profile. Themandσ values obtained this way are shown in

Fig. 5.21 as a function ofg. It can be seen thatm decreases strongly whereasσ is slightly increasing

in good correlation with the model in section 5.5.1.

The interference effect was corrected for by the following two fundamentally different approaches.

(i) The first two reflections were omitted from the fitting, thus the remaining peaks, which were

practically not affected by the interference effect provided the correct microstructural parameters. (ii)

In accordance with the model of the effect of interference onthe diffraction patterns, it is assumed

that a fraction of the powder has an apparent crystallite size larger than the true value. Furthermore

it is assumed that the fraction of the crystallites affectedby the interference effect and the rest of

the powder, both can be described by separate size distributions. Latter are denoted byf1(x) and

f2(x), respectively. A decaying mixing parameterξ is introduced in order to describe the angular

dependence of the interference effect. The effective size distribution function,fe f f is obtained as the
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Figure 5.21: Them andσ size parameters, determined individually for the first few profiles in the

diffraction pattern ofSrF2 ball milled for 40 min, as a function ofg (g = 2
sinθ

λ ).
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weighted sum off1(x) and f2(x):

fe f f(x) = ξ f1(x)+(1−ξ) f2(x) (5.13)

The simplest and most plausible selection for the size distribution functions is the lognormal function,

so f1(x) and f2(x) are described by lognormal size distribution functions with the median and variance

parameters:m1, σ1 andm2, σ2 respectively. Eq. (5.13) shows that the effective size distribution is

a g dependent bimodal size distribution function in which the apparent part disappears withg. The

numerical analysis was shown that theg dependence of the mixing parameterξ was well described by

a simple Lorentzian function of
g−g0

g : ξ =
1

1+As2 , wheres=
g−g0

g , g0 = 2sin(θ111)/λ and 2θ111

is the Bragg angle of the 111 reflection. By using this correction considerable improvement of the

quality of the fitting was achieved. A typical example of the fitting with this correction, corresponding

to SrF2 ball milled for 40 min is shown in Fig. 5.22 which has to be compared to the uncorrected fit

plotted in Fig. 5.17.

It is also noted that by using this correction the fitting was stable and gave reasonable values for the

microstructural parameters without applying any restraints or omitting any part of the patterns. In the

following the microstructural parameters obtained by using this correction are analyzed.

Figure 5.22: Fitting with correction for the interference effect for SrF2 ball milled for 40 min.
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5.5.3 The microstructure of the fluorides

Figs. 5.23 and 5.24 show typical lognormal distribution functions for the ball milledSrF2 specimens

according to the parametersm andσ given by the CMWP procedure. The figures show that after

shorter ball milling periods, i.e. about 6 and 12 min, the specimens consist of almost monodisperse

and relatively large crystallites. At longer ball milling periods the size distributions indicate that the

size of crystallites collapses dramatically. At the longest ball milling periods a slight re-increase of the

crystallite size can be observed, see Fig. 5.24. This small but definite reincrease has been observed

in three fluorides:SrF2, BaF2 andCaF2. It means that during the ball milling of these fluorides the

particles are first fragmented and subsequently become welded again. Similar behaviour during ball

milling has been observed frequently in the literature. Guerrero-Paz & Jaramillo-Vigueras (1999)

ball milled ductile materials such as Cu, Ni and Cu-Ni alloysand observed coalescence of grains

after longer milling periods by TEM investigations. Rác andcoworkers (2005) ball milled dodeca-

tungstophosphoric acid (HPW) and Nafion-H for catalytic purposes. Authors claim that because

of coalescence catalysts with high catalytic performance require the use of optimal milling time.

Coalescence during ball milling was also observed by Pál et al. (1986). Janot & Guerard (2005)

also observed coalescence during ball milling of anodic materials for lithium-ion batteries. They state

the importance of surface energy in the procedure of coalescence. The importance of coalescence

is well known in the process of sintering, where surface energy is one of the controlling parameters

(Wakai & Aldinger, 2003). The area weighted mean crystallite size values,< x>area, as a function of

the milling period are shown in Fig. 5.25 for the different fluorides. The figure shows that< x >area

decreases first with the milling period and after a minimum value it re-increases slightly in accordance

with the size distribution functions. The absence of the slight re-increase of the crystallite size inCdF2

might be due to the rather long incubation period observed inthe evolution of the dislocation density

discussed in detail below. The evolution of the dislocationdensity,ρ, with milling period is shown

in Fig. 5.26. In the initial state of the as-grown crystals the dislocation density is practically zero,

i.e. ρ < 1014m−2, this value is marked schematically in the lower left cornerof the figure. The

figure indicates that the investigated fluorides fall into two different groups. (i) In the case ofBaF2

andSrF2 the dislocation densities increase almost monotonously upto about 7·1015m−2 during the

first 30 min milling period and saturate for the rest of the milling procedure. (ii) In the other group,

CaF2 andCdF2, during the first 6 to 12 min ball millingρ increases to about 2.5 ·1015m−2 where it

saturates for about 20 and 30 min in the case ofCaF2 andCdF2, respectively. After this intermediate

plateau the dislocation density increases again during further ball milling and reaches the same large

values ofρ as in the case of the other two fluorides. The figure suggests that after even longer milling

periods also in these two fluorides, i.e. inCaF2 andCdF2, the dislocation densities would saturate

at around values of 7·1015m−2. The presence of an incubation period in the milling procedure of

CaF2 andCdF2 is unequivocally present. A much weaker, however, existingshort incubation-like

stage in the case ofBaF2 andSrF2 can also be observed, as shown in Fig. 5.26. The latter lasts

up to about 12 minutes. The incubation periods in the evolution of the dislocation densities can be

correlated to the homologous temperatures of the fluorides,Thom=
TRT
Tm

(whereTRT andTm are room
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temperature,TRT = 300K, and melting temperature, respectively). In Fig. 5.27 the incubation periods

are plotted versus the homologous temperatures. A good correlation between the two parameters can

be seen. The rapid increase ofρ, without longer incubation periods can be observed in the case of

BaF2 andSrF2 with the lowestThom values. On the other hand, the lengths of the incubation periods

increase monotonously withThom. Based on these observations the development of the dislocation

density can be discussed as follows. At the very beginning ofball milling a rapid production of

dislocations is necessary in order to enable plastic deformation. In the case ofCaF2 andCdF2, once

a relatively large number of dislocations (about 2.5 · 1015m−2) are present, due to the higherThom

and lowerTm, it can be assumed that the existing dislocations are mobileand plastic deformation can

proceed relatively easily without further increase ofρ. However, at the end of the incubation period,

further plastic deformation needs even more dislocations,thereforeρ increases rapidly again up to

values of about 7·1015m−2. In the case ofBaF2 andSrF2, whereThom is lower andTm higher, the

mobility of dislocations is considerably restricted as compared to the other two fluorides. Therefore,

plastic deformation can only be enabled by intensive dislocation production resulting in a rather short

incubation-like stage followed immediately by further rapid increase ofρ. Finally, this rapid increase

is followed by the saturation ofρ at about 7· 1015m−2 which is close to the theoretical maximum

value of average dislocation densities (Essmann et al., 1981).

Figure 5.23: Size distribution functions ofSrF2 samples ball milled for 6, 12 and 60 min.
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Figure 5.24: Size distribution functions ofSrF2 samples ball milled for 30, 40 and 60 min.

Figure 5.25: The area averaged mean crystallite size as a function of milling period for the different
specimens.

91



Figure 5.26: The dislocation density as a function of milling period for the different specimens.

Figure 5.27: The incubation period as a function of homologous temperature.
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Chapter 6

Summary and Conclusions

Most of the physical properties of crystalline materials are fundamentally determined by the mi-

crostructure. The most important fundamental microstructural properties are the type, density and

distribution of crystal defects and the grain or crystallite structure. X-ray line profile analysis (XLPA)

is one of the most important and powerful alternative methods besides electron microscopy for the

characterization of microstructures.

This dissertation presents the theoretical models of the microstructure, the classical methods of

XLPA and my newly developed methods, the MWP and CMWP procedures, which are based on the

modeling of the physical properties of the different crystal defects. Several applications are presented

in order to show the efficiency of the MWP and CMWP methods.

• The theoretical models of the microstructure are presentedin Chapter 2: the size broadening

of the profiles is calculated for the most important crystallite shapes and lognormal crystallite

size distribution. The Fourier transform of the size profileis also given. The Wilkens model of

dislocations is a sophisticated model for the description of the strain profile corresponding to a

physically realistic dislocation configuration. By linking it with the theory of strain anisotropy,

the model can be applied for a general description of strain broadening of diffraction peaks.

The broadening caused by planar faults is also discussed.

• Chapter 3 gives a review of the classical methods of XLPA. Thebasic breadth and Fourier

methods: the classical and modified Williamson-Hall methods and the classical and modified

Warren-Averbach procedures are presented. The recently developed full profile and whole pat-

tern fitting methods and the moment methods are also presented.

• Chapter 4 describes the MWP method, which is a Fourier method, based on the modeling of

the physical properties of the X-ray diffraction profiles for the different crystal defects. By

comparing the so obtained model based line profiles with the measured ones the method gives

the microstructural parameters of the investigated materials. The steps of the data preparation

and the steps of the MWP evaluation procedure are presented.Several applications of the
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method have been selected and the results provided by MWP have been compared to the results

of other microstructural methods, e.g. electron microscopy.

• In Chapter 5, the CMWP method is presented, which is also based on the modeling of the phys-

ical properties of the different crystal defects, but instead of fitting the separated peak profiles, it

works directly on the measured intensity pattern. By comparing the model based pattern to the

measured one the microstructural parameters are determined. The principles of the method, the

steps of the evaluation procedure and the several availablefrontends of the CMWP program are

presented. The details of the numerical procedure, e.g. thedetermination of the background,

the usage of the instrumental profiles, the weighting algorithms and the different aspects of the

sampling of the intensity pattern and the Fourier transforms are also given. The convergence and

numerical stability of the procedure are also examined. By applying both the MWP and CMWP

procedures for the determination of the microstructural parameters of ball milled Al-Mg alloys,

the results obtained by the two different procedures were compared. The method was applied

to nanocrystalline Cu and the planar fault density was determined. A special application of the

CMWP procedure for systematically prepared ball milled fluorides is presented: for some of

the samples an unusual X-ray optical interference effect was observed and the microstructural

parameters have been determined by correcting for this effect.

By applying the MWP and CMWP methods, the microstructural properties of several different mate-

rials or groups of materials are determined and these properties are examined as a function of several

mechanical or thermal treatments.

The most important results of my work are:

• The size profile [S1] and the size Fourier transform of coherently scattering domains with

spherical or ellipsoidal crystallite shape and lognormal size distribution have been determined

[S4, S5, S6, S8]. The expression of the Fourier transform supports the fast numerical evaluation.

• The method for applying the strain profile for XLPA based on the Wilkens model of dislocations

and the model of average contrast factors have been worked out [S4, S6, S14].

• By using the theoretical size and strain profiles new methodshave been developed for the ex-

traction of microstructural parameters from X-ray measurements:

– by fitting simultaneously the whole Fourier transforms or intensity profiles obtained by

separation and instrumental deconvolution, (the method Multiple Whole Profile Fitting:

MWP) [S4, S6], and

– by the convolutional fitting (with the inclusion of the instrumental effect) of the whole

diffraction spectrum, (the method of Convolutional Multiple Whole Profile Fitting:

CMWP) [S14].
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• A software package has been developed implementing the methods described in sections 4 and

5, which is available to the public [S4, S6, S14] through the web:http://www.renyi.hu/mwp

andhttp://www.renyi.hu/cmwp.

• By using the MWP method I have shown that:

– the dislocation density has the average value of 1016m−2 in severely deformed Ti, which

is in accordance with electron microscopy investigations;and in this deformation stage

mainly the slip systems <a> and <c+a> are activated [S11, S12, S22],

– by applying ball milling and heat treatment of PbS (galena) samples, a systematic set of

samples was produced and by evaluating the X-ray line profiles of these samples using the

MWP method a map of microstructure was obtained. By comparing the microstructural

parameters of samples from ancient cosmetics fabricated inthe Egyptian Kingdom 3500

b.c. with the parameters of the systematically prepared samples I have shown that only

gentle crushing and no heat treatment or heat treatment at a temperature of less than 300
◦C was applied [S9] for the fabrication of the archaeologicalcosmetics.

• By using the CMWP method I have shown that:

– in ball milled Al-Mg alloys the dislocation density as well as the average crystallite size

shows a saturation after 2h of ball milling and the results obtained by the MWP and

CMWP methods have been compared [S13, S16, S14],

– in ball milled fluorides (MF2, M=Ca,Ba,Cd,Sr) the presence of an X-ray optical interfer-

ence effect can be observed which is present primarily if theaverage crystallite size of

a larger portion of crystallites is about 5-10 nm or smaller [S17]. The X-ray optical in-

terference effect means that the first few peak profiles become narrower than what would

correspond to the domain size.

• I have shown that if the method of XLPA is carried out correctly, which means that the ex-

periments are done with an angular resolution high enough and that the evaluation is based

on correct microstructural models, then good correlation is observed between TEM and XLPA

parameters. For example, in the case of nanocrystalline Si3N4 particles the size distribution

determined either by TEM or XLPA are in excellent agreement,cf. [S1]. In a large number of

cases very good correlation was found between the microstructural parameters, especially the

subgrain size, and size distribution, the dislocation density and dislocation types determined

either by TEM or XLPA [S1–S22].

As the results of this work, a coherent set of methods has beendeveloped which is suitable for the

characterization of the microstructure of most different crystalline materials, e.g. metals, alloys,

ceramic materials, minerals or polymers, in terms of the size and size distribution of crystallites or

grains, the density, the distribution and character of dislocations and the density and type of planar

defects.
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Short summary

Most of the physical properties of crystalline materials are fundamentally determined by the mi-
crostructure. Electron microscopy is an important method for the visualization of the microstructure.
The most important fundamental microstructural properties are the type, density and distribution of
crystal defects and the grain or crystallite structure. X-ray line profile analysis (XLPA) is one of the
most important and powerful alternative methods besides electron microscopy for the characterization
of microstructures. This method gives information about the following basic microstructural proper-
ties: (i) the size and distribution of crystallites, (ii) the shape anisotropy of crystallites, (iii) the den-
sity, character and distribution of dislocations and (iv) the density and type of stacking faults and twin
boundaries. This dissertation presents the most importanttheoretical models of the microstructure
according to the literature, my results related to the development of these models, the most important
methods of XLPA: the classical ones and some of the most recent methods of literature. The most
important part of my work is the development and implementation of new XLPA methods, which are
based on the modeling of the physical properties of the different crystal defects. By comparing the
so obtained model based line profiles with the measured ones the methods give the microstructural
parameters of the investigated materials. By applying these methods the microstructural properties of
several different materials or groups of materials are determined and these properties are examined as
a function of several mechanical or thermal treatments.
The most important new scientific results of my work are: (i) Ihave determined the size profile [S1]
and the size Fourier transform of coherently scattering domains with spherical or ellipsoidal crystal-
lite shape and lognormal size distribution [S4, S5, S6, S8].(ii) I elaborated the method for applying
the strain profile for XLPA based on the Wilkens model of dislocations and the model of average
contrast factors [S4, S6, S14]. (iii) I developed two new methods by using the theoretical size and
strain profiles for the extraction of microstructural parameters from X-ray measurements: (a) by fit-
ting simultaneously the whole Fourier transforms or intensity profiles, (the method Multiple Whole
Profile Fitting: MWP) [S4, S6], and (b) by the convolutional fitting of the whole diffraction spec-
trum, (the method of Convolutional Multiple Whole Profile Fitting: CMWP) [S14]. (iv) I worked
out a software package for these methods described which is publicly available [S4, S6, S14]. (v)
By using the MWP method I have shown that: (a) the dislocationdensity has the average value of
1016m−2 in severely deformed Ti, which is in accordance with electron microscopy investigations;
and in this deformation stage mainly the slip systems <a> and<c+a> are activated [S11, S12, S22],
(b) by applying ball milling and heat treatment of PbS (galena) samples, a systematic set of samples
has been produced and by evaluating the X-ray line profiles ofthese samples using the MWP method
a map of microstructure has been obtained. By comparing the microstructural parameters of samples
from ancient cosmetics fabricated in the Egyptian Kingdom 3500 b.c. with the parameters of the
systematically prepared samples I have shown that only gentle crushing and no heat treatment or heat
treatment at a temperature of less than 300◦C was applied [S9] for the fabrication of the archaeolog-
ical cosmetics. (vi) By using the CMWP method I have shown that: (a) in ball milled Al-Mg alloys
the dislocation density as well as the average crystallite size shows a saturation after 2h of ball milling
and the results obtained by the MWP and CMWP methods have beencompared [S13, S16, S14], (b)
in ball milled fluorides (MF2, M=Ca,Ba,Cd,Sr) the presence of an X-ray optical interference effect
can be observed which is present primarily if the average crystallite size of a larger portion of crystal-
lites is about 5-10 nm or smaller [S17]. (vii) I have shown that in nanocrystalline Si3N4 particles the
size distribution determined either by TEM or XLPA are in excellent agreement, cf. [S1]. In a large
number of cases very good correlation was found between the microstructural parameters, especially
the subgrain size, and size distribution, the dislocation density and dislocation types determined either
by TEM or XLPA [S1–S22].
As the results of this work, a coherent set of methods has beendeveloped which is suitable for the
characterization of the microstructure of most different crystalline materials.



Rövid összefoglalás

Kristályos anyagok számos fizikai tulajdonságát alapvetően meghatározza a mikroszerkezet. A
mikroszerkezet szemléltetésének fontos módszere az elektronmikroszkópia. A legalapvetőbb mik-
roszerkezeti tulajdonságok a kristályhibák típusa, sűr˝usége és eloszlása valamint a szemcse-, il-
letve krisztallit szerkezet. Az elektronmikroszkópia mellett az egyik legfontosabb alternatív mód-
szer a röntgen vonalprofil analízis (RVPA). Ez a módszer alapvetően a következ̋o mikroszerkezeti
tulajdonságokról ad felvilágosítást: (i) krisztallitok méretér̋ol és méreteloszlásról, (ii) krisztalli-
tok alak anizotrópiájáról, (iii) diszlokációk sűrűségéről, típusáról és eloszlásáról, valamint (iv)
rétegz̋odési hibák illetve iker határok sűrűségéről és típusáról. A disszertációban bemutatom a
mikroszerkezet legfontosabb irodalomban fellelhető modelljeit, illetve eredményeimet melyek ezek
továbbfejlesztésével kapcsolatosak, ismertetem a RVPA fontosabb módszereit a klasszikusaktól
kezdve a legújabb irodalomban fellelhető módszerekig. Munkám legjelentősebb része a RVPA olyan
módszereinek a kifejlesztése, amelyek a különböző kristályhibák fizikai tulajdonságai alapján mo-
dellezik a röntgendiffrakciós vonalprofilokat. Ezeknek a modellezett vonalprofiloknak a mérésekkel
való összevetéséből, a kifejlesztett módszerek segítségével megkaphatjuk avizsgált anyag mikro-
szerkezeti paramétereit. A kidolgozott módszerek alkalmazásával meghatározom számos különböző
anyag illetve anyagcsalád mikroszerkezeti tulajdonságait, valamint azt, hogy ezek hogyan változnak
meg különböz̋o mechanikai vagy termikus kezelések hatására.
Ennek a munkának a során kapott főbb új tudományos eredményeim a következők: (i) Meghatároz-
tam gömb- [S1], illetve forgási ellipszoid alakú, lognormális méreteloszlású koherens domének méret
profil függvényeit és azok Fourier transzformáltját [S4, S5, S6, S8]. (ii) Kidolgoztam a deformá-
ciós profil felhasználásának módszerét a diszlokációk Wilkens-féle modellje és az átlagos kontraszt
faktorok modellje alapján [S4, S6, S14]. (iii) Az elméleti méret- és deformációs profilok alapján
módszereket dolgoztam ki a mikroszerkezet paramétereinekmeghatározására röntgendiffrakciós
mérésekb̋ol: (a) a teljes Fourier transzformáltak, illetve teljes intenzitásprofilok együttes illesztésével
(Multiple Whole Profile Fitting: MWP) [S4, S6], illetve (b) ateljes intenzitás spektrum konvolú-
ciós illesztésével (Convolutional Multiple Whole Profile Fitting: CMWP) [S14]. (iv) Bárki számára
elérhet̋o programcsomagot fejlesztettem ki ezekhez a módszerekhez[S4, S6, S14]. (v) Az MWP
eljárás alapján megmutattam, hogy: (a) erőteljesen alakított Ti-ban a diszlokációsűrűség 1016m−2

átlagos értéket ér el, összhangban az elektronmikroszkópos vizsgálatokkal; továbbá, hogy ilyen de-
formált állapotban döntően a <a> és <c+a> típusú csúszási rendszerek dominálnak [S11, S12, S22],
(b) a PbS (galenit)̋orlésével és h̋okezelésével készült mikroszerkezeti állapottérkép alapján megál-
lapítottam, hogy az ie. 3500 Egyiptomi Királyságokban használt kozmetikumok készítésekor csupán
rövid idejű őrlést és 300◦C-nál nem magasabb hőmérsékletű h̋okezeléseket alkalmaztak [S9]. (vi)
A CMWP eljárás alapján megmutattam, hogy: (a) golyós malomban őrölt Al-Mg ötvözetben mind
a diszlokáció sűrűség, mind pedig a szemcseméret 2 óraőrlés után telít̋odést mutat, továbbá az
MWP és CMWP módszerekkel kapott eredményeket összehasonlítottam [S13, S16, S14], (b) golyós
malombanőrölt alkáliföldfém fluoridokban kimutattam egy újszerű röntgen optikai interferencia
effektus fellépését, amely elsősorban akkor jelenik meg, ha a méreteloszlás jelentős hányadában a
szemcseméret 5-10 nm, vagy annál kisebb [S17]. (vii) Nanokristályos Si3N4 részecskéinek TEM
és röntgen méreteloszlására igen jó egyezést kaptam [S1]. Számos esetben igazolódott, hogy az
elektronmikroszkópos szubszemcse méret, diszlokációsűrűség, valamint diszlokáció típus kitünően
egyezik a vonalprofil analízis módszerével nyert értékekkel [S1–S22].
Munkám eredményeképpen előállt egy olyan koherens módszer együttes, amely alkalmas alegkülön-
böz̋obb kristályos anyagok, nevezetesen, fémek, ötvözetek, kerámiák, k̋ozetek, illetve polimerek
mikroszerkezetének jellemezésére a krisztallit és szemcseméret, a diszlokáció sűrűség, eloszlás és
típus, illetve a rétegz̋odési hibák alapján.


