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Chapter 1
Introduction

Macroscopic properties of materials are strongly affettgdhe microstructure. Microstructure, on
the other hand, is a complex feature with very different aspahich often depend even on the
method of investigation. The most common and most effecti@ostructure testing is based on
electron probing. Transmission electron microscopy (Tpkbyides direct images of the microstruc-
ture of almost any kind of materials including hard crysted] hard amorphous or soft materials.
Scanning electron microscopy (SEM) can test bulk materragvever, only the surface or surface
near regions. The focussed ion beam (FIB) technology comsbivith SEM and TEM offers new
perspectives for extremely sophisticated microstructeséng opportunities. Still, there are numer-
ous important features, especially residual internakses, microstresses, or different kinds of size
distributions which easily escape the observation faediof electron microscopy methods. X-ray
line broadening was one of the first promising methods of ositucture testing, long before electron
microscopy, emerged in the early twenties. However, thegnemising results faded away when it
turned out that experimental uncertainties and interpoetdaifficulties did not allow straightforward
conclusions. As a result, in the sixties and seventiesrelechicroscopy was thought to be the only
reliable method for characterising the microstructure Asfrdy line profile analysis was almost for-
gotten. From the seventies onward, the appearance of dedisgnchrotron X-ray sources, better
laboratory X-ray generators, improved X-ray detectors a@d, more appropriate fundamental the-
ories of diffraction by crystals containing defects, gaveesv impetus to X-ray line profile analysis.
Today, the fast computer technology and greatly enhancpdrigmental possibilities brought back
X-ray line profile analysis as one of the most effective alidive methods to electron microscopy for
the characterisation of the microstructure of crystallimeerials. The aim of the present dissertation
is to provide a comprehensive summary of the theoreticaidenations, experimental and numerical
methods which were developed for the evaluation of X-rafratition patterns in terms of disloca-
tion density, dislocation character, crystalite size dnd distributions, and planar defects (especially
stacking fault and twin boundary frequency). A computetwafe package has been developed which
allows to evaluate different diffraction patterns meadwe different crystalline materials: powders,
bulk polycrystals, single crystalline samples or textuspdcimens. The different parts of the soft-
ware package offer different ways of the evaluation whiah loa optimally adapted to the particular



problem. For example, in the case of single crystals, thevishaal diffraction profiles of different
Bragg reflections can be analysed in terms of individuabdition contrast (or orientation) factors.
Or, in the case of an ideally random powder specimen, theevim@asured powder pattern can be
evaluated with the same philosophy as the structure refinebyethe Rietveld method. In this case
the whole measured pattern is fitted by a theoretically coosd diffraction pattern which is ex-
pressed in terms of dislocation structures by averageadistin contrast factors and a crystallite size
distribution function. In the entire software package thal@ation is based on microstructural mod-
els in which strain is assumed to be caused by dislocatiarespgsoadening is caused by coherently
scattering domains and planar defects are included on #ie bisimulated diffraction profiles.

The software package was applied successfully to more tltlnzen cases of completely different
materials which have been evaluated for the microstructlir¢S1-S23]. The most important facili-
ties provided by the software package are the following.

()

It allows the fitting of the separated diffraction profiler their Fourier transforms by theoreti-
cal intensity profiles or Fourier coefficients calculatedtfee concomitant size and strain effect
(where strain is considered to be produced by dislocatidris} part of the package is the Mul-

tiple Whole Profile (MWP) fitting procedure [S4, S6]. The dishtion densities, the character
of dislocations and the subgrain size distribution in cogeformed by equal channel angular
pressing (ECAP) [S4, S6] and ball milled PbS (galena) [SH exaluated by the MWP proce-
dure. Shape anisotropy in carbon-black [S4, S5, S6, S8] ustiadlite size distribution and the

dislocation density in hexagonals8Bi, were also evaluated by the MWP method [S1].

(i) Measured diffraction patterns can be fitted by numeiyceonstructed diffraction patterns in

which the size and strain effects are theoretically catedlaand can be convoluted with the
measured instrumental profiles. In this procedure all tfferéint profile functions, i.e. the

size, the strain and the instrumental profiles are convad)uteerefore the method is called:
Convolutional Multiple Whole Profile (CMWP) fitting procedu[S14].

(i) In both, the MWP and CMWP methods, the strain profiles ether be scaled by average

(iv)

dislocation contrast factor€§, or by individual dislocation contrast factoGq. Former cor-
responds to the case when averaging over the permutatidhe bkl indices is appropriate,
whereas latter applies when the specimen is either a singgéat or strongly textured. When
strain anisotropy is treated by using the individual dialtan contrast factors, it means that the
strain part of each diffraction profile is scaled by a seairadividual scaling parameter.

Balogh and coworkers have systematically analysecffeet of planar defects in cubic [S18]

and hexagonal crystals (Balogh et al., 2008). It was fouatltthe planar faults profile can be
given as the linear combination of a delta function and onaare Lorentzian functions. The

systematic analysis provides the correlation betweenltdrapfault densities and the different
parameters of the Lorentzian functions. The profile fumiand the parameter files were
incorporated into the CMWP method [S18].



In a mechanically alloyed Al base Al-Mg alloys the subgrareglistribution, or coherently scattering
domain size distribution and the dislocation densities @matacter were determined by the CMWP
method [S14]. These microstructural parameters were ateduand analysed as a function of the
Mg concentration. The diffraction patterns were also es@d by the MWP method. The results
provided by the MWP and CMWP methods are critically discdgsee in section 5.3).

The diffraction patterns of different ball milled statedloé Cak, SrF,, BaF, and CdF; fluorides have
been analysed by the CMWP procedure in terms of dislocagasitles and types, and crystallite size
and size distributions [S17]. An unusual X-ray optical ifeeence effect of line broadening, similar
to what was observed earlier by Rafaja et al. (2004) is foumnglairticular states of the ball milled
fluorides. The interference effect has been successfuthecied (see in section 5.5).



Chapter 2
Theoretical aspects of X-ray line broadening

In this chapter the different fundamental theoretical M®0désize and strain broadening and planar
faults are reviewed. The size profile and its Fourier tramsfcorresponding to spherical domains or
crystallites with lognormal size distribution is calcddt The same is also determined for anisotropic
crystallite shape. The model of strain broadening is bripfigsented for different dislocation dis-
tributions. Strain anisotropy is discussed and describe@ims of the anisotropic strain effect of
dislocations. The concept of dislocation contrast facitengresented for different crystal systems.
The broadening caused by planar defects is briefly discu3$eimodels described here are the the-
oretical background of the two microstructural methodsrw# profile analysis described in detail in
Chapters 4 and 5.

2.1 Line profile parameters

The X-ray diffraction measurements usually provideltf28) intensity profiles of the different reflec-

tions. In order to compare this with thgory, it is practiaatonvert the variable@to g, the variable
2sin

of the reciprocal space, whege= )\ is the absolute value of the diffraction vector. The value
of g at g, the exact Bragg position, is denoted ¢pyand it is expressed agg = Z%neB. In the
following ofteng will be denoted also b¥.
The variable of the intensity profiles can be expressed as:
2co9Dp
S=0—0g~ x JA) (2.1)

The most important characteristic parameters df(anintensity function corresponding to the Bragg
peak at Bg are:

¢ the maximum intensity
lo =max{l(s)|se R}. (2.2)

¢ the Full Width at Half Maximum (FWHNM)



FWHM({l(s)} = s, — 51, wheres; < s andl(s1) = 1(s) = > (2.3)

¢ the integral breadti{equivalent to the area of the normalised intensity curve):

B=—"—. (2.4)

In X-ray diffraction the relation FWHM (3 is usually satisfied.

2.2 Size broadening of diffraction profiles

With decreasing scattering volume the diffraction profilesaden. This is called size broadening.
The X-ray measurements provide the coherently scatterimgath size (crystallite size). This is

often smaller than the grain or subgrain size obtained bstrassion electron microscopy (TEM),

however, Hansen and coworkers claim that when TEM micrdgape evaluated correctly then the
X-ray and TEM sizes correlate well (Winther et al., 2004)Ungéar et al. (2005) it was shown that

the coherently scattering domain size given by X-ray linefifg analysis provides the subgrain or
cell size bounded by small angle grain boundaries or dips#dis. In the present section the effect
of the coherently scattering domain size on the diffracpoofiles is discussed.

2.2.1 Size parameters

The definition of the commonly used different size paranse{2rl2), (2.13) and (2.16) is presented
through a simple case study (Warren, 1969). Let’'s assumefiaiite plane crystallite with the thick-
ness of N atoms. According to the theory of kinematical X-sagttering, the line profile of this
special crystallite (Warren, 1969):

sir? (N x)
sir? ()
wherex = iGa, G = g+ Ag, g is the diffraction vectorAg is a small vector, and is the unit cell

vector chosen to be perpendicular to the plane of the chiystalhe functionsé?rz]é'\)l(x) describes the

shape and position of the peaks in this special case. Thasifumis plotted for different values dd
in Fig. 2.1. It has a maximum value at positioxs= nt, n € Z. This condition is equivalent to the

i’ (NX
Laue equations. The maximum value of this function i imu = N2,

x—0 SIM’(X)
For large values oN this profile function can be approximated by the followinggle function:

sir?(NX) NZ(sin(Nx)>2

N X

(2.6)

Siré x
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The FWHM value of this function is given by:
sin(Nx) 1
Nx 2

This transcendent equation can be numerically solved\for the solution isNx = 1.39, conse-
guently, the FWHM (R) is reciprocally proportional to the number of lattice psiperpendicular to
the diffracting plane:

2.7)

1
FWHM = 2.78—. (2.8)
N

This means that the profile function becomes narrower agiséatlite becomes thicker. The integral
breadth of this curve is:

© sir?(NX) g
J e
B= =Tl—. (2.9)
N2 N
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Figure 2.1: The functlonﬁ((T)) plotted close to its first maximum for different valueshbf As N

tends to infinity, the curve becomes a delta function.

A conventionaB - 20 diffractometer measures the intensity parallel to theatiioa of theg diffraction
vector as a function of = |Ag|. The FWHM and integral breadth value of th@) intensity function



as a function ot can be expressed as:

2.78 1 0.9
FWHM = -, (2.10)

m Nacog(G,a)d) Lga

1 1
= = , (2.11)
Nacog(G,a){) Lga
wherelg 5 = Nacog (G, a) <) is the projection of the crystallite width in the directiofitbe diffrac-
tion vector. This means that by measuring the widths of trek geofiles, only the crystallite size
parallel to the diffraction vector can be determined.

. . . . . 0.9 1
For the reflectiorh00, Lg 4 is equal to the thickness of the crystal, i.e. eltheﬁﬁm orto B The
following two size parameters can be defined generally faraitraryl (s) intensity profile:

0.9
= FWHM' (212)
1
d=—. (2.13)
B
Eq. (2.12) is the Scherrer (1918) equation. The theorediestription requires the Fourier transform
Sir?(Nx
of the intensity profile too. The Fourier transform of thedtian —x(z—) is:
, N
MN-TIL), L <
(2.14)
, N
0, if |L| > T
Fig. 2.2 shows this function.
, AL
N
ﬁ E L
n i

: : Sin?(Nx)
Figure 2.2: The Fourier transform of the functlenxz—.



For the infinite plane crystallite with the thickness of Nrag the Fourier transform of tHés) size

function is:
N

No D IL| if |L| <L
|—G7a |—G7a 7 = ea

0, if IL| > Lga.

(2.15)

This means thakg 5 can be determined from the initial slope of the Fourier tfams. The size

parametet g is generally defined for an arbitratys) intensity profile as the initial slope of thgs(L)

Fourier transform (Warren & Averbach, 1952):
As(0) ¢

- » Zd—LAs(L)

(2.16)

L=0

The definition ofLg is illustrated in Fig. 2.6 for the case of spherical crys#tiedl with lognormal size
distribution.

In general the different size parameters satisfy the faligwrelation: D > d > Ly (Langford &
Wilson, 1978).

For spherical crystallited andLq are proportional to the volume and area weighted averageathiye
size, respectively (Langford & Wilson, 1978):

Izvldl 4
< X>yol= —— = —d, (2.17)
AT
|
IzAidi 3
<X >area: - = — LO. (218)
A 2

2.2.2 Size distribution functions

In the previous section the size broadening of a single altitsthas been discussed. A polycrystalline
or fine powder sample consists of many crystallites withedéht sizes which can be characterised
by a size distribution function. By selecting the propeegirstribution and assuming a realistic crys-
tallite shape, the size broadened profile can be calculatedtbeoretical basis. Several distribution
functions can be used to describe the size distributionydtaliites (Langford et al., 2000; Scardi
& Leoni, 2002). Among these, one of the most flexible is thentwrgnal size distribution (Aitchison
& Brown, 1957), which was confirmed by several observatiamd successful applications (Valiev
et al., 1994; Terwilliger & Chiang, 1995; Krill & Birringer]1998, Ungar et al., 1999; Langford et
al., 2000). The Gamma distribution (Arley & Buch, 1950) is@buitable to describe the experimen-



tal size distributions. York (1999) proposed another thstion. These distributions are discussed
below.

1) The lognormal distributionthis is the most commonly used size distribution of pagtgikze in

a fine powder according to TEM observations (Aitchison & Bnow957). It can be shown that
a milling procedure leads to a lognormal size distributidinfls, 1982), therefore the lognor-
mal distribution is widely used in microstructural invgstiions. It is obtained by substituting
the variable of a normal distribution with its logarithm. fhone applies the lognormal dis-
tribution to describe the size distribution of crystaliitehis means that the logarithm of the
crystallite size follows a normal distribution. The degdiinction of the lognormal size distri-

bution has the following form:

l 2
- e <<>> | 019

wheremando are the parameters of the distribution, logs the median and is the variance
of thenormaldistribution.

The parametem ando are called “median” and “variance” of the lognormal sizetriisition.
In the MWP and CMWP procedures [S4, S6, S14]bhe logm andc = /20 parameters are
used for the fitting procedure.

The Gamma distributian

The Gamma distribution (Arley & Buch, 1950) is also flexibledacan be widely used for
describing observed crystallite size distributions. Basity function has the form:

= brja) (a_bX) “exp<_a_b><) ’ (2:20)

wherea andb are the parameters of the distribution dret) is the Gamma function.

York’s distribution The York distribution (York, 1999) was obtained by assugnannormal
growth phenomena. The density function of the York distitou has a form similar to the

Gamma distribution:
1 ax\ 2 ax
f(x) = (—) exp(——), (2.21)
br(a) \ b b

wherea andb are the parameters of the distribution dra) is the Gamma function.

It should be noted here that Leoni & Scardi(2004) proposedradtagram for the size distribution
density function and each individual column height of thiggdam is fitted independently in their
pattern-refining procedure. Since this is an ad-hoc, ewparial distribution its discussion is not
subject of this theoretical section. Langford et al. (20@®)e shown that most of the above discussed



size distribution functions correlate well with experintednX-ray diffraction profiles and, that it is
difficult, if not impossible, to distinguish between sizetdibution functions on an experimental basis.

2.2.3 Determination of the size profile [S1, S4, S6]

By assuming a particular crystallite shape and crystadlite distribution, one can determine the
theoretical size profile. Bertaut (1949) and Guinier (1968ye shown, that the size profile of a
powder specimen consisting of crystallites with arbitrsine and shape can be determined as follows:

I) the crystallites should be divided into columns parditethe diffraction vectog,

i) the “size intensity profile” is obtained as the volumeiglged sum of the intensity profiles
normalized by their integral intensities correspondingdach column.

The intensity profile normalized by its integral intensifyaocolumn with area; and heightV; is:

Sir?(M; Tis)

s (2.22)

By summing up the contributions from all columns of all cglites using the volume of the column
as weight, the intensity distribution becomes:

s sir?(M; Tts) AM (2.23)

s~y ———AM;. :
2w MM

Let us introduceg(M)dM as the sum of the volumes of the columns with height betwdeand
M + dM from all crystallites:

gM)dM = ZdV,—(M,dM). (2.24)

]

Using this quantity, the intensity distribution can be egsed as:

o .

?(M
() N/HQ(MNM, (2.25)

In this way, the size profile can be obtained by determigii\d) dM, which depends on the crystallite
shape and the size distribution of the crystallites. In tiéoding, the size profile is calculated
according to the lognormal size distribution, and for sptadi(i) and ellipsoidal (ii) crystallite shapes
[S4, S6]. Latter is a simple and general description of dewia from spherical shape. It also accounts
for anisotropic size broadening as a functiorhkf.

For a particular crystallite shaggM)dM is determined first for one crystallite. This calculation is
based on the geometrical properties of the crystallite sh@pe size profile is obtained by summing
up for all crystallites using the crystallite size disttilon function. In the case &phericalcrystallites
andlognormalsize distributiong(M) dM is obtained as follows:

Using the notations of Fig. 2.3 the following geometricaliation can be written:

10



2
=y + (%) : (2.26)

For one crystalliteg(M)dM is equal to the volume of the part of the sphere with colummtien
betweerM andM + dM:

g(M)dM ~ —2mydy M. (2.27)

M dM
By differentiating eq. (2.26) the following is obtainedi® = 5 Therefore folonecrystallite:

g(M)dM ~ MZdM. (2.28)

Sincef(x) dx is proportional to the number of the crystallites with digemdetweenx andx-+ dx and
all the crystallites with diameter> M contain the column lengthl:

g(M)dM ~ (/f(x)dx) M2dM. (2.29)
M
Using the distribution density function in (2.19), thisegtal can be expressed as:
/wf()d Lort o9 (in) (2.30)
X)dx = —erfc | ————= | , :
i’ 2 V20

where erfc is the complementary error function, defined as:

2 7 o
erfc(x) = —/e at. (2.31)
VT
Thus forall crystallitesg(M)dM can be written as:
g(M)dM ~ M2erfc o9 (1) dM (2.32)
T30 : .

Using eg. (2.25) the following size function is obtained][S1

[oe]

M
|5(s):/|v|8in2('v'”S> f o9 (1n) dM. (2.33)

eric

()2 V2o

11



M [M+dM

Figure 2.3: Determination a@f(M) dM in the case of a spherical crystallite with radiusThe goal is
to calculate the volume of the part of the sphere with coluemgth betweet andM +dM. This
part of the sphere is approximated by an annulus based pridnit & expressed witiv, x andy,

wherey is the radius of the annulus.
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Figure 2.4: The size function for spherical crystalliteshwognormal distribution with fixed value of
0 =0.71, as a function of s. The valuewivaries for the different curves. The valuerofs indicated
in the upper right corner of the figure.
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Figure 2.5: The size function for spherical crystalliteshAtbgnormal distribution with fixed value
of m=2.72 nm, as a function &f. The value ofo varies for the different curves. The valuemfs
indicated in the upper right corner of the figure.

This size function is plotted for different valuesmfando in Figs. 2.4 and 2.5.

In order to speed-up the numerical calculations in the MWIPGIMWP methods [S4, S6], the explicit
form of the Fourier transform of the size profile is requiréa the following, the Fourier transform
of the theoretical size profile is determined [S4, S6].

irP(MTS
According to eq. (2.14), the Fourier transform of the fuont-ls# is:
M—IL, if lL|<M
(2.34)
0, if |L| > M.

13



Using this equation, the Fourier transform of the size fiomc(2.33) can be expressed as:

AS(L) = 2}°|S(s) cog2rsl) ds=
0

© Y] i (M |Og(%>
=2 | [MSTMTS) orfe
0\O

(™) V2o

dM) cog2rsL) ds=

00 00 sinz(M T[S) |Og(%) (235)
= gM (2{ T cog 2rsL) ds) erfc 5o dM =

Iog(%)

(o

By using substitutions and partial integration this intdgan be further simplified:

= f (M2—|L|M) erfc
Ll

meexn( 2 (v26) log (M)

AS(L) = exp(é(\fo) >erfc 7\/{; —%ﬁo —

mPexp(v/26)° log (%)

prerfc W—ﬁo + (2.36)
lo Ll

|I_‘?)erfc A\m

6 V20

Dividing AS(L) by the maximum value, the normalised size Fourier transisrobtained. The maxi-
mum value ofAS(L) is:

- 2m3exp<%(\/§0)2>

3
An example for the plot of the size Fourier transform is shawfig. 2.6. It is noted that instead
of calculating the Fourier transform of eq. 2.23, Dr. Guhbicalculated the size Fourier transform
(Ungér et al., 2001) according to the following direct edgprafor AS(L) given in Guinier (1963):

AS(0) (2.37)

AS(L) :\—i/o(r)o(rth) or, (2.38)

14



wherea(r)=1if r € “scattering object” otherwiseo(r)=0. The two different calculations are leading
exactly to the same result fé(L) [S4, S6].

The formulae ofl S(s) and its Fourier transformS(L) enable to express the size parameters as a
function of the parameters of the distribution. The deiawabf AS(L) gives thel size parameter:

5 2
L AS(0) _ 2mexp<Z(\f20) ) | 2.39)

dAS(L) 3
a / .

The maximum value of the size profile is:

dM. (2.40)

15(0) = OOM3 f Iog<%>
()_O/ erfc N

The integral of the normalized size profile leads to the sarameted:

7 2
S :|z<o>:3mexp(z<ﬁ°>), a1
B 1159ds A0 4

—00

According to egs. (2.17) and (2.18), the following is obgalrfor the volume and area averaged
crystallite size:

< X >yoi= Mexp(3.50%) (2.42)

<X >area: mexp(2502) (243)

It is noted that these expressions for the volume and argaga@ mean crystallite size are identical
to those given by Hinds (1982) and Langford et al. (2000).

2.2.4 Anisotropic size broadening [S1, S4, S6]

If the crystallite shape is spherical, the size functionsistiopic and thus independent of thkl
indices. If a non-spherical crystallite shape is suppo#eisize function becomes anisotropic and
it depends on thékl indices. In the following the size function is calculated @wystallites with
spherically ellipsoidakhape antbgnormalsize distribution [S4, S6].
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Figure 2.6: The theoretical Fourier transform of a size prddir spherical crystallites with lognormal
size distribution. The initial slope definirlg is also indicated in the figure.

¢g £ 4 Z

X=X’

Figure 2.7: The determination of the ellipsoidal size fimt The radii of the spherical ellipsoid are:
aandc. There are two coordinate systemsy,zandx,y,Z. The latter is the eigensystem. The two
coordinate systems are rotated by an angla afound the axix. The diffraction vectog is also
indicated. The goal is to determiigéM ) dM based on the geometrical properties of the part of the
ellipsoid with column length betwedvl andM + dM parallel tog.
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The determination af(M) dM consists of the following steps (see Fig. 2.7 for the notegjo

1. construction of the equation of the ellipsoid with eligity € = a in the eigensystem denoted
byx,y,z.

2. transformation with rotation of angte around the axix into the systenx,y, z (a is the angle
between the diffraction vector and the axis of revolutiomhaf ellipsoid and z is parallel tg).

3. expression of the column lendtht M(Xx,y) = z2(x,y) — z1(X,y), wherez; andz, are determined
using the equation of the ellipsoid.

4. determination of the are@i{M), of the plane-curve determined by equati(x,y) = M (which
is in fact an ellipse).

5. For one crystallite the following is obtained:
T
g(M)dM:M[T(M)—T(M-l—dM)]:Eh(e,a)Msz, (2.44)

whereh(e,a) is determined using the equation Mif(x,y). It is noted, that in the case of a
sphereh(1,a) =1.

6. calculation of the maximum column lendthyax:

2a

I\/lmax: 1
\/1+ <? — 1) coga

7. summing up for all crystallites with the column lendthand using the lognormal size distri-
bution density functiorf (X):

(2.45)

g(M)dM ~ h(g,a)M?erfc dM. (2.46)
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The size function obtained in this way is identical to thatresponding to spherical crystallites, the
only difference is that the parametabecomeskl-dependent and the paramateof the distribution
has to be substituted for the followiindsl dependent expression:

mMa

\/l-l- (8_12 —l) COS O

wheremy is the parametem of the size distribution.

) (2 .47)

Mhk =

If the relative orientation of the unit cell vectors to thésaaf revolution of the ellipsoid are known,
COsO i can be expressed with tinl indices.

For cubic crystals, if the axis of revolution is parallel keetunit cell vectoe:

I
COSCth| = m (248)

For hexagonal crystals, if the axis of revolution is patabethe unit cell vector:

COSO K = (2.49)

n :
\/ég(h2+hk+k2)+|2

It is noted that Scardi & Leoni (2002) calculated thid dependent size broadening for different
polyhedra, which is another possibility to introduce sinésatropy.

2.3 Strain broadening

In a real crystal, due to the lattice defects, the atoms a@ated relative to their ideal position. For
this reason the reciprocal space may also be distorted anxbtidition of diffraction is satisfied not
only in the ideal positions of the reciprocal lattice pojrtst in a finite volume in their proximity.
This effect is called strain broadening. Warren & Averbat®52) gave the Fourier transform of the
X-ray line profile if size and strain effects are present stemeously:

A(L) = AS(L)AP(L), (2.50)
where the strain Fourier coefficients can be expressed ifollogving form:
AP(L) = exp(—2m*g°L2(e] ) . (2.51)
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whereg is the absolute value of the diffraction vect@réﬁ is themean square straindepending
on the displacement of the atoms relative to their idealtosi and the brackets indicate spatial
averaging.

According to the continuum theory of elasticity, the longiinal strain parallel to the direction of the
g diffraction vector is defined as (Wilkens, 1970):

L
%u(r-i— %)—%u(r — %)
g(L,r) = C ) (2.52)

Nl
NI~

whereu is the displacement field ardis the distance of the points+ %|—g| andr — %|—g| Thus the
mean square strain is obtained as:

] (eg(L,1))% d®r
€2 ) = 2.53
< g,L) fff d3r ( )
v
For discrete atoms, the stragy,_is defined as:
g g
L —U(rj>——U(r-/>

n|0

where j and j' are the indices of the atoms in the directiongpfn = | — j’, L = nlp andlg is the
distance between two atoms in the directioig@¥arren & Averbach, 1952). The mean square strain
is obtained as the square of the strain averaged over ali@pairs with the distance aflg:

(e2,) = (2.55)

j~7'=n

Several authors worked on the determination of the mearrsgtrain, including Warren & Averbach

(1952), Krivoglaz & Ryaboshapka (1963) and Wilkens (19%@arren and coworkers (1952, 1959)
assumed either random atomic displacements and/or stpfaaits. Krivoglaz (1969) and Wilkens

(1970) assumed dislocations as the main source of peakdnagclose to the fundamental Bragg
positions. Krivoglaz and Ryaboshapka (1963) assumed Bytodmdom distribution of dislocations

in the entire crystal and for smdllvalues obtained:

(€5L) = (%) 2TrpCIog (%) , (2.56)

whereD is the crystal size. The problem with this formula is thait(fgiverges a® tends to infinity
and (ii) using this strain function, the strain Fourier sBorm does not decay dstends to infinity.
However, for smalL values this logarithmic expression enables to estimateiflecation density,
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for more details see the description of thedifiedWarren-Averbach method in section 3.2.

The logarithmic behaviour of the mean square strain for smahlues, as a general property of any
dislocation configuration was derived by a fairly exact noetby Groma (1998, 2003).

A numerical code has recently been developed in [S23] tauitatle the mean square strain and the
strain profile for an arbitrary sized (e.g. 100x100 nm) @ibbx containing up to a few hundred
randomly distributed straight parallel edge dislocatiohse numerical evaluation of eq. (2.53) has
proved the logarithmit dependence qf»:al_) for smallL values in correlation with Krivoglaz (1969),
Wilkens (1970) and Groma (1998). Fig. 2.8 shows a typicah®a for 10 dislocations in a 50x50
nm crystal box.

0.0006 T ————— : . . —_—
"strain.dat" using 1:3  +
-0.000135*log(x/37) -------

0.0005 [+ .

0.0004 |-

0.0003

<82>

0.0002 | % .

0.0001 | . i

10 100

L [nm]

Figure 2.8: The mean square strain calculated for 10 randdistributed edge dislocations in a
50x50 nm crystal box. Thescale is logarithmic. The dashed line indicates that theutated mean
square strain can be well described by a logarithmic fundtietween approx. 10 and 25 nm.

Wilkens (1970) calculated the mean square strain in theedntange assuming the so callegtrict-
edly randondistribution of dislocations. This calculation is discedsn somewhat more detail in the
next paragraph.

2.3.1 The Krivoglaz—Wilkens model of dislocations

Wilkens improved the model of Krivoglaz by introducing a dgim parameter, the effective outer cut
off radius of dislocationsK;), instead of the crystal diameter, by this eliminating tbgdrithmic

singularity in the expression of the mean square strain in(8d6). He assumed that the crystal
contains separate regions with diameterRgf in which parallel screw dislocations are randomly
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distributed. Within each of these regions the distributbdrthe dislocations is completely random
and they have a density of exacfly There is no interaction between dislocations outside e$eh
regions. He called this special dislocation configuratestnictedly random distribution and the mean
square strain was derived in the following form for the exitirange (Wilkens, 1970):

@@):(%JimeG%), (2.57)

whereb is the absolute value of the Burgers-veciois the dislocation densitg; is the contrast factor
of the dislocations and is the strain function. In the followind will be called the Wilkens function.
f has the following explicit form, see egs. A6-A8 in AppendixrAWilkens (1970):

. 5121
f*(n) = Iogr]—i—( IogZ) 90nﬁ+
2 1 | Narcsinv
e 4r]2} Of \Y; -
177691 41 2 1—n2
ﬁ_lson‘*9o”*‘90”} n™= (2.58)
17111 7 1 : 1 -
m|I2p2 T2t ?”Z] aresim +gn?, ifn<t,
X 5121 11 1 :
f (ﬂ)zmﬁ [24+ |092']] —, ifn>1,

wheref <%> = f*(n) andn = %exp(—%)%.

The Wilkens function and its approximations for small armdéavalues ot are plotted in Fig. 2.9.

In the Wilkens function the same logarithmic term is presenin the Krivoglaz model, but it does
not diverge with the crystallite size, since it depends @ndbrrelation length parametét;, which

is a finite parameter of the distribution. A common propeftthe Krivoglaz and Wilkens models is
that the mean square strain has a singularity for small gadtie. This singularity does not affect the
shape of the line profiles considerably, since in the Fodrarsform it is multiplied byL? and this
multiplier strongly compensates the divergenc&loglL — 0, if L — 0.

It is noted that in previous papeR: = exp(2) R = 7.4R; was used as the effective outer cut—off
radius of dislocations (Ungar et al. 1984; Wilkens, 1988ckéz et al., 1997).

Inserting eq. (2.57) into (2.51), one obtains the strainriéodtransform:

AP(L) = exp[—m%z(QZC)psz (é)} . (2.59)
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Figure 2.9:*(n), the Wilkens function (wherg = %exp(—%) %) and two of its approximations:

fi(n) = % —log2—1log(n), the function describing its logarithmic singularityrt— 0 and fa(n) =

%ﬁ% the hyperbolic function describing the tails of the fupati

22



Kamminga and Delhez (2000) have shown using numerical sitiouls that the line profile calculated
by the Wilkens model is also valid for edge dislocations amded dislocations.

Wilkens (1978) introducet¥*, the dislocation arrangement parameter, which is a diraless pa-
rameter:

M* = Ri/p (2.60)

TheM* parameter characterizes the dislocation arrangement:
e if the value ofM* is small, the correlation between the dislocations is gfron
e if the value ofM* is large, the dislocations are distributed randomly in ttystallite

Fig. 2.10 shows two dislocation configurations: in the firg tislocations are strongly correlated
and the value oM* is small and in the second the correlation is weak Bfids large. Fig. 2.11
presents the strain profile for fixgdand variableM * values.

It is noted that the Fourier transform given by the Wilkensdedas real, this means that its inverse
Fourier transform, the strain intensity profile is symneetuwhich is not always fulfilled in case of
real measurements, e.g. in single crystals with dislonatll structure, the line profiles can be
asymmetric. Several different dislocation configuratiam produce asymmetric broadening of the
profiles (Ungér et al., 1984; Mughrabi et al., 1986; Gaal,3,94P76, 1984). In Ungar et al. (1984)
and Mughrabi et al. (1986) authors propose a special cdllstraicture for dislocations: a matrix
structure where the dislocation density in the dislocatiatls is significantly larger (so the material
is harder) than in the cell interiors. This model is calledUfyhrabi’s composite model”. In section 5.2
an implementation of this model for X-ray line profile anasyis presented. Gaal developed a model
for a far more general distribution of dislocations, in wha configuration of polarised dislocation
dipoles leads to asymmetric strain broadening (Gaal, 18936, 1984). It should also be noted that
not only strain broadening causes asymmetric broadenitigedine profiles, but planar faults also
introduce asymmetry in the profile shape, for more detagsseetion 2.4.
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Figure 2.10: Schematic representation of dislocation gonditions and the corresponding strain pro-
file for small and large values of thd* parameter. Thg scale of the strain profiles is logarithmic.
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Figure 2.11: The shape of the strain profile for fbgednd variableM * values. It is noted that for
each profile thes variable is normalized by the FWHM value of the profile.
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2.3.2 Strain anisotropy: the concept of contrast factors

Strain anisotropy means that the broadening of the profiles/sn anisotropic behaviour as a func-
tion of thehkl indices: the width of the profiles is not a monotonous funced the length of the
diffraction vector or its square, see for example the Witisn-Hall plot (Williamson & Hall, 1953)

in Fig. 3.1. This is explained by the anisotropy of the meaiase strain:(sa'_) depends on thikl
indices. This dependence is described by the contrast {@ntation) factor<C. The value of the
contrast factors depend on the elastic constants of therialeaiad on the relative orientation of the
diffraction vector §)), the Burgers vectom, the line vectorl) and the normal vector of the slip plane
(n) of the dislocations. The contrast factors of dislocatioharacterize the “visibility” of disloca-
tions in the diffraction experiments. For exampldg = 0 for a dislocation, it has no, or almost no
broadening effect on the line profile. While the contrastdescan be determined experimentally for
single crystals, in a polycrystalline sample only the agesaofC can be observed. For these type of
materials, strain anisotropy can be well accounted for byatherage contrast factors of dislocations.
See for example thmodifiedWilliamson-Hall plot (Ungéar & Borbély, 1996) in Fig. 3.2.

It has been shown by Ungar & Tichy (1999) that if the specinsezither untextured or if all possible
slip systems are equally populated, the average contr@st$acan be expressed by the fourth order
polynomials of thehkl indices. For cubic crystals (Ungér & Tichy, 1999):

C = Choo(1—gH?), (2.61)

where
2 h2K2 + h212 4 K212 6
(k127 (2:62)

For hexagonal crystals (Ungar & Tichy, 1999):

C = Cho(1+agH? 4+ apH3), (2.63)
where
H2 [h? + K2+ (h+k)?] 12
1 [h2+k2+(h+k)2+%(%)2|2]2,
|4 (2.64)
HZ =

(N2 +K2 + (h+K)?+3(2)217]2’

andf—;1 is the ratio of the two lattice constants.
For orthorhombic crystals (Ungar & Tichy, 1999):

Chii = Choo (H§+ a1H12 + 82H22 + a3H32 + a4Hf + a5H§) , (2.65)
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where

(2.66)

12h2

K212
p2c2

(Brg+a)”

Here it is noted that a formally similar equation to (2.61% lheen derived for random displacement
of atoms in elastically anisotropic cubic crystals by S®keWilson (1944). However, it has not
been evaluated until Ungar and Tichy (1999) have rediseavand further evaluated the correlation
between dislocations and strain anisotropy.

The constant€hgp andCyyo are calculated on the basis of the crystallography of dilons and
from the elastic constants of the crystal (see: Ungar et399) The parameterg a, ap,...,as

are the same for all reflections. These parameters areddlathe edge or screw character of the
dislocations. In Ungar et al. (1999) the value of these emttiactor parameters were calculated for
different materials and for different type of dislocatioR®r example thg parameter were calculated
and plotted as a function of th&, Zener constant for pure edge and pure screw dislocations. Th
Williamson-Hall, MWP or CMWP procedure provide a measuratug of theq parameter, which
usually falls between the values of thgparameter calculated for edge or screw dislocations. If the
value of the measuregl parameter is close to theevalue calculated for edge dislocations, then the
character of the dislocations is edge, if it is close toglvalue calculated for screw dislocations, then
the character is screw and if its value is close to the aveshtjee edge and screwvalues, then the
character of dislocations is mixed. One can see from eq9) 2t the diffraction order dependence
of the strain Fourier—transform is given yC. A numerical code (the ANIZC program) has been
developed by Dr. Borbély (2003) for the calculation of the@wdual or average contrast factors taking
into account the elastic constants of the material, theeéaftarameters and the relative orientations
of thel, b, n and g vectors. In addition to X-ray line profile analysis, the theof dislocation
contrast factors can also be applied successfully for atialgi neutron diffraction experiments (see
e.g. Somogyvari et al., 2001).

&
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2.3.3 The Groma-Csikor strain function

The logarithmic approximation of the strain function for @i values given by eq. (2.56) was
determined by several authors: Krivoglaz (1969) and Wiskg®70) derived it for special dislocation
distributions and Groma (1998) proved its validity for a geai distribution of dislocations. This
means an intensity profile which decays asymptoticallzlgaSBroma, 1998).

Gaal (1984) determined the (complex) strain Fourier tramsfof a random configuration of polarised
screw dislocation dipoles. Groma & Monnet (2002) calcudakél) corresponding to a distribution
of infinitesimal polarised dislocation dipoles and derigategative exponential function for the strain
Fourier transform. The strain Fourier transform calcuddtg Wilkens (1970) has the same asymptotic
behaviour for largé. values. This means a Lorentzian intensity profile.

Groma and Csikor proposed a simple interpolation functibitivconnects smoothly these two func-
tions (Groma, 2003; Csikor & Groma, 2004):

2
) = (g5 MEMISTEL), @67)
where:
X Y
fORCSILy=Wlog| 1+ — |+ ——, 2.68
L) J L) 1+2zL2 (2.68)

andW, X, Y andZ are parameters of the function. Actually the authors haveelkthis formula for
the P(1) distribution function of the internal stresses caused Isjodations, which is analogous to
thel (s) intensity distribution used in X-ray line profile analysis.

ForL — 0 this function tends thIog‘xT| +Y and by comparing the expression(ej') to that given

by Krivoglaz (2.57) the following equation is obtained fofts", the dislocation density, arfi, the
effective outer cut-off radius of dislocations:

X o Re
Wlogm +Y = cdisl-pdis! Iogm (2.69)

ForL — oo the function takes the form:

1 WX2 Y\ 1
WX—+ | ——+ = (2.70)
Since the profile function is area normalised, in other wéy@ = 1, the second term should disap-

pear:
WX2 Y
———+— | =0. (2.71)

This means, that the strain function depends only on thrdepi@ndent parameters, therefore one of

the four parameters can be eliminated, eZg= e
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The first term in eq. (2.70) can be compared to the followingregsion depending oaf''P, the

disl.
dipole distance and opf'P- = P 5 the density of dislocation dipoles:
1 . .1
WX = Cﬂ(')g‘ad'p'pd'p'm (2.72)

From these equations, the following expressions are adddor the values of the physical parameters
(Cdisl. andCTP: are the dislocation and dipole contrast factors, respelgiv

_ W
deS|. — , (273)

Y

=X — 2.74
Re exp(W), (2.74)
adiP = —ain 2% (2.75)

, w
pdiP = oy (2.76)
h0O
It is noted that the Groma-Csikor strain function is impleneel is the CMWP program package
[S14], however it is not always possible to determine so n&rgin parameters from the measure-
ments, especially if size broadening is also present. Irestases, e.g. if the quality of the measured
data is low, or if the tails of the profiles cannot be measueshbse of the strong overlapping between
peaks, it is even not possible to determmandRg accurately.
Eq. (2.68) provides a simple and flexible strain functionjolican also be used to approximate

the Wilkens function if less independent parameters ard,esg. by writing eq. (2.68) in the form
GR-CSt () — X Y _1 S\ L

f (n) =Wlog <1+ Gl + 1z wheren = 2exp< 4> RO the parameters W, X, Y and

Z can be determined by fitting these parameters to the datdspoi the f*(n) Wilkens function.

The resulting function gives a perfect description of thdKéfis function, see the graphs of the
fitted fGR-CS<(n) function and the Wilkens function in Fig. 2.12 (also cf. Fig.9). The fitting
provided the following parameter$y = 1.14908,X = 1.4125,Y = 0.212226 and the value of
is V%Z = 0.18514. By using these parameters a good approximation oMhbens function is

obtained which is even simpler than the following approxgrfarmula given by van Berkum (1994):

. 7 2. 3% .
f (n):—logn+(Z—I092)+%—%T ifn<1i,
(2.77)

.. 2561 11 1 1
f(ﬂ)—ﬁﬁ—[ﬂ‘i‘zmgm}ﬁz, ifn>1.

28



*
"

B
A~
s ]

n

fGr»C

Pl

f(n)

Figure 2.12: f*(n), the Wilkens function (wherg = %exp(—%) %) and fCR-CS the Groma-

Csikor strain function fitted to the data points of the Wilkeiunction. The fitting provided the
following parameters of the Groma-Csikor strain functidh= 1.14908 X = 1.4125,)Y = 0.212226

andZ = V% = 0.18514. This strain function gives a perfect approximatibtie Wilkens function.

2.4 Planar faults [S18]

According to the numerical calculations of Mr. Levente Ralpbased on the theoretical work of
Warren (1969) and the numerical code developed by Tready @291), the peak broadening due to
stacking faults for amkl reflection in cubic fcc crystals can be expressed in theviefig form:

hkl hkl hkl
&) P2 P3

WES SRR DN O

where the first term is given by a Dirac delta function, theeoghare broadened and shifted Lorentzian
functions, WX are the FWHM values of the Lorentzian functions asil are the shifts of the
Lorentzian functions. Bota ands™' can be expressed as fifth order polynomials ofcth@roba-
bility of planar faults, wherg stands for intrinsic or extrinsic stacking faults or twinunalaries:

(2.78)

19%(s) = po'8(s) +

Wik = Wila; +Wla? + Wilas +wilas +whtla®, (2.79)

ol - Wi + Wi i i+ wita? (250)
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Wik = Wila; + Wila? + Wilas + Wikl +whka®, (2.81)

s = S + SPaf + o + ot + Sfaf, (2.82)
¥ = P+ Fo? + Sad+ Haf + a3, (2.83)
= a; + Sfaf + Saf + ot + . 284

The real and imaginary parts of tA&€'(L) Fourier transform ofS!(s) can be expressed as:

OA%(L) = pj+ p cos 2L ) exp(—TwiL) + 3! cos 2mL ) exp( L)+

+pi cog2nsL ) exp(—wgKIL) (2.85)
OASY(L) = pi¥ sin(2rsi¥L) exp(—TwAKIL) + pBK' sin(2msh!L) exp(—mwdXIL) +
+ph sin(2mshiL ) exp(—TwAKIL). (2.86)

It is noted, that since this Fourier transform is complex ihtensity profile (obtained by inverse
Fourier transforming this expression) is asymmetric. Famhetype of materials and stacking faults,
the values o™, X andwi"! are determined for differetikl values by using the program DIFFAX
developed by Treacy et al. (1991). Th&!, ' andw"™¥' parameter values have been evaluated for
fcc crystals for the first 15 reflections and for the three améntal planar fault types by Mr. Levente
Balogh [S18].
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Chapter 3

The classical methods of X-ray line profile
analysis

This chapter is a summary of the methods of X-ray line profilalgsis developed by other au-
thors. The information about the microstructure is in thetiand the shape of the diffraction
profiles. Therefore the methods of X-ray line profile anaysan be divided into two main groups:
(i) breadth methods and (ii) whole profile or pattern fittingthods. A brief summary is given for
the Williamson-Hall breadth method and the Warren-Avenbdaourier procedure. The so called full-
profile and whole-pattern methods of other authors and theent-methods are shortly discussed.

3.1 Breadth methods

The Williamson-Hall procedures are based on the differesi¢iodependence of the different physical
effects causing the broadening of diffraction profiles. He tase of spherical crystallites the size
broadening of profiles is constant and isotropic in the whetgprocal space, while strain broaden-
ing increases with K, the reciprocal space coordinate.r#istis caused by dislocations, the strain
broadening is usually anisotropic and can be interpretethbyconcept of dislocation contrast (or
orientation) factors (Ungéar & Borbély, 1996; Ungar & Ticth999). If planar or stacking faults are

present, the broadening is also anisotropic, however & dogincrease with K. Here it is noted that
anisotropic crystallite shape can also introduce anipgtio the broadening ([S4, S6, S5]; Scardi &
Leoni, 2002).

In the Williamson-Hall procedurgWilliamson & Hall, 1953), theAK values defined as the FWHMs
(a) or integral breadths (b) of the measured profiles argéqal@s a function of K. This is called the
Williamson-Hall plot. Such a plot gives a qualitative iddmat the causes of peak broadening: if the
sample consists of small crystallites, thi€ value atk = 0 is high, while if the crystallites are large,
this value is negligible or small. Sincel&t= 0 no strain broadening is present, the corresponfliag
value is due only to size broadening and according to egs2)2nd (2.13) thidK value is equal to
% @) or% (b), respectively. Here it is noted that this value can omylbtermined by extrapolation
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from the measured data points, since there is no Bragg pdak=al.

The slope of the curve gives qualitative information on tinergyth of the strain effect. If the effect is
strong,AK increases strongly witK, while if the strain is weak, thAK values are almost constant
or the slope is small. In order to estimate the dislocatiomsdg, the slope can also be interpreted
guantitatively, however it is better to use the Warren-Aaeh (Warren & Averbach, 1952) method
(or a more advanced full profile fitting procedure, see e.g.nilethods described in Chapters 4 and
5) for this purpose.

If strain is caused by dislocations, the widths of peaks sadypical anisotropic behaviour (see for
example for deformed polycrystalline copper sample Figl) and themodifiedWilliamson-Hall
procedure (Ungar & Borbély, 1996) can be used to interprairsin terms of dislocation contrast
factors. In this procedure the widths are plotted as a fonaif K+/C or K2C leading to a consider-
ably smoother curve for materials containing dislocatjae® for the same deformed polycrystalline
copper sample Fig. 3.2. The strain anisotropy parametarbeaetermined by using a simple linear
regression procedure. In previous papers (e.g. Ungar &&8wnrh996), it is suggested that the widths
depend quasi-linearly oK+/C. In recent papers [S4, S6], it is suggested that the widtpsr
quasi-linearly ork?C. This is based on the Wilkens model (Wilkens, 1970), whicnvery powerful
model for describing the strain properties of materialstaiming dislocations. The Wilkens strain
profile depend only on the powers K£C, so it is an even function df+/C, therefore the widths
(FWHM or integral breadth values) of the peak profiles are algen function oK+/C. As long as
the basic assumptions of the Wilkens model are suitablehiririvestigated materials, the widths
can depend only oK?C and not onK+/C. The modified Williamson-Hall plots have been plotted
as a function oK2C for several materials, and it has been found that the datheaery well fitted
linearly as a function oK?C. For a demonstration, see for example Fig. 3.3 for the sarterded
polycrystalline copper sample as plotted in Figs. 3.1 arzd Blowever there is no guarantee that
the assumptions of the Wilkens model are always satisfied@nsbme particular sample a linear
dependence oK+/C is also conceivable. The Williamson-Hall methods use ohé/widths of the
profiles which is a very limited portion of the informationtime profiles. However, these simple and
powerful methods are well suitable to qualitatively invgate the materials.
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Figure 3.1: Classical Williamson-Hall plot for the integbaeadths (deformed polycrystalline copper
sample). In this figure thp values are plotted as a function kf
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Figure 3.2:ModifiedWilliamson-Hall plot for the integral breadths (deformealyxrystalline copper
sample). In this figure thg values are plotted as a function 6/C. The data points are fitted by
a parabolic curve, the fitted parameters of the parabolalaceirsdicated. The value of the fitted
function atk = 0, AKS is the breadth of the pure size function.
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Figure 3.3:ModifiedWilliamson-Hall plot for the integral breadths (deformealyxrystalline copper
sample). In this figure thp values are plotted as a function KEC. The data points are fitted by
a straight line, the fitted parameters of the line are alsicatdd. The value of the fitted function at
K = 0, AKS is the breadth of the pure size function.
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3.2 Fourier methods

In the Warren-Averbach proceduréhe Fourier transforms of the profiles are analysed. In thg-c
sical Warren-Averbach plofWarren & Averbach, 1952) the normalized Fourier trans®mwh the
measured peak profiles are calculated for equidistantlykatvalues oL in a range{0, Limay and
logA(L) is plotted as a function dk? for eachL value. The Warren-Averbach plot shows usually
a similar anisotropic behaviour as the Williamson-Halltplim the modifiedWarren-Averbach plot,
the measured data points can be plotted smoothly as a formtithe scaling paramet&?C. It is
demonstrated in Figs. 3.4 and 3.5.

The values of the physical parameters can be determinedlewdo Using egs. (2.50), (2.51) and
(2.56), for small values of, the logarithm of the Fourier transform of the profiles carapproxi-
mated as:

logA(L) ~ logAS(L) — pBL?log (%) (K%C), (3.1)
Th? . . . .
whereB = — In this method, the parameters in the contrast factors atrétted, but are fixed to
particular values (obtained for example by the modified Mftison-Hall procedure).

For each value of;, logA(L;) is fitted by the parabolic curve, + bjK?C + ¢K*C? and by plot-
ting the exponential of the; values as a function df, the sizeFourier transform is obtained. By
fitting the initial slope of the size Fourier transform (ugimear regression) one can get the value of
Lo, see Fig. 3.6.

The initial slopedb; divided by Li2 are plotted as a function of ldg, as shown in Fig. 3.7. By
using linear regression on the linear part of this data, titéal slope is equal t@B, from which

the dislocation densityy, can be determined. The other parameter of the regressiesliequal to
—pBlogRe from which the value oRe can be determined.

The applicability of this method is limited by the fact that $ome cases when plottlr]?g as a

function of logL;, the curve has no linear part (the logarithmic formula isvadid for largerL values
and even for small values affor materials containing dislocations a “hook-effect”,evtion from
the logarithmic function can be observed, see e.g. Wilk&8g0), so the determination pfandRe
becomes very unstable.

When fitting logA(L;), the termcK*C? indicates the presence of a higher order ternia'g]L).
This term is used only for describing the curve more acclyatee value ofc; is not used at all.
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Figure 3.4: Warren-Averbach plot (deformed polycrystedlcopper sample). In this figure 18¢)
is plotted as a function df? for eachL value. The anisotropic behaviour of the data points can also
be observed.

X% T X T L ! I
R S
- ‘O‘ 0O T T T e e
.. ) . e O T T
1 TR
N
WL
Ny
2 e
~~
~
—]
A
< 3F
>
L=0 +
o L=2.84864 x
L=5.69728 *
-4 | L=8.54592 al
L=11.3946 =
L=14.2432 °
L=17.0918 .
L=19.9405 a
L=22.7891 a
-5 I"=25.6378 v
L=28.4864 v
L=31.335 o
L=34.1837 -
L=37.0323 o
—6 | | L 1 1 1 1
0 5 10 15 20 25 30 35

K2C [1/(nm)?]
Figure 3.5:ModifiedWarren-Averbach plot (deformed polycrystalline coppaenpke). In this figure
logA(L) is plotted as a function d¢°C for eachl value. The data points are fitted by parabolic curves,
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Figure 3.7: The plot for determining andRe by using themodifiedWarren-Averbach method (de-
formed polycrystalline copper sample). In this flgure%e/alues are plotted as a function of ldg).

The linear part of the data points is fitted by a line and thpeslof this line gives the value @fand
thefbz value of this line at. = 0 gives the paramet&..
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3.3 Full profile fitting methods

Instead of the breadth methods, whole profile methods hase developed recently for the determi-
nation of microstructural parameters. In Chapter 4 the idigéidVhole Profile (MWP) fitting method
[S4, S6] will be presented in detail, which is in fact a Fourreethod working on the whole (Fourier)
profiles. In the MWP method the Fourier transforms of the mess profiles for all reflections are
fitted simultaneously with ab-initio theoretical functrits theoretical basis for including the effect
of size and strain simultaneously is the convolutional équg2.50) given by Warren & Averbach
(1952). According to the literature, some of the full profiblethods other than the MWP method are
briefly presented here:

1. Nusinovici & Rehfeldt-Osierski (1990) developed thegraom PROFILE which uses a method
called pattern decomposition. By using this program onedea@rmine interactively line profile
parameters by fitting the measured peaks or clusters of pe#tkanalytical functions. The
following analytical functions have been incorporatedheit program: \oigt, pseudo-\Voigt
and Pearson VII.

2. Louer & Audebrand (1999) developed the programmfFOU. In their method all reflections are
fitted simultaneously by using pseudo-Voigt functions. Tnerostructural parameters can be
determined by analysing the parameters of the pseudo-ioigtions.

3. Dong & Scardi (1999) developed a similar program, callzalgX which also provides individ-
ual profile parameters.

4. A similar approach is the method of Whole Powder PattetmBi(WPPF) developed by Scardi
and Leoni (1999). In this method an analytical function (egvoigtian) is adopted to fit the
experimental profiles and the profile parameters are coeddxnt suitable conditions (Gaus-
sian and Lorentzian widths in the case of a Voigtian profilecfion) to the microstructural
parameters.

It is noted, that unlike these methods, the MWP method doéepnowide individual profile param-
eters, the microstructural parameters for size and stffeoteare obtained directly from the fitting
procedure which is using ab-initio theoretical profile ftions depending only on the microstructural
parameters.

3.4 Pattern fitting methods

As discussed in the previous section, most of the earlierlevpomfile fitting methods are based
on fitting the measured profiles by analytical profile funetio The most common fitting functions
are the \Woigt, the pseudo-Voigt and the Pearson VII profilecfions which are scaled to thl

anisotropy by ad-hoc scaling parameters, as suggestedddiotCat al. (1958). These procedures
have several deficiencies: (i) the analytical profile fumresi usually do not describe the physical
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profiles correctly over the entire intensity range, thelgeifit around the maxima or in the tail regions,
but usually do not fit well the two regions simultaneously,tfiere is no unique correlation between
the microstructural parameters of the materials and thi#d@parameters of the analytical functions.
Therefore the method of Convolutional Multiple Whole P®{ICMWP) fitting [S14] has been devel-

oped in which the profile functions are based and construzyadsing fundamental physical princi-

ples applied to the different types and kinds of lattice disfeThe CMWP method works directly on

the measured pattern instead of the Fourier transform afagparated individual profiles (as it was the
case in the MWP method). The theoretical basis for inclutlegeffect of size and strain simultane-
ously is the convolutional equation (2.50) given by WarreA&rbach (1952), just like in the case of
the MWP method. In the CMWP method, a model based pattermiparced directly to the measured
pattern using a nonlinear least squares procedure. As the ktéthod, the CMWP method does not
need individual peak parameters either, the microstratharameters are determined directly from
the fitting procedure. For the details of the CMWP procedsee, Chapter 5.

In this section a few introductory comments are made abalitbrature, regarding some of the
pattern fitting methods other than the CMWP procedure.

1. Langford et al. (2000) proposed a pattern fitting methadn@nocrystalline distortion-free
materials. They applied it successfully to the powder patté nanocrystallin€eG, and the
size distribution function has been determined by fitting.

2. Scardi & Leoni (2002) developed a similar procedure whschalled Whole Powder Pattern
Modeling (WPPM) which uses also ab-initio theoretical ftimas, but does not account only for
the size effect, but also includes theoretical model foesssources of strain. Its theoretical
basis for including the size and strain effect simultangoissalso the convolutional equation
(2.50) of Warren & Averbach (1952).

3.5 Methods analysing the moments of the profiles

These single profile methods are based on the different asyimpehaviour for the different sources
of broadening of the higher order moments of the scattetedsity. The first model was the variance
method proposed by Wilson (1962). Borbély and Groma (20@dpgsed recently a very powerful
momentum method which deals correctly with measuremengvbloth strain and size broadening
are present and also the level of the background can be detatrm a physically correct way. It
uses a general theory for the asymptotic behaviour of dasimc induced X-ray peak broadening, it
does not depend on a particular model of dislocation arraege like the Wilkens model, only the
generals—2 dependence of the tails of the intensity profile is used. Trelsroadening is accounted
for by thes~2 dependence of the size profile for the case of small crystsliUnlike the multi-profile
fitting methods, this method can be applied to single profgéspecially for single crystals and the
dislocation density can be estimated in this case too. Hewav order to evaluate the tails of the
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profiles accurately, this method requires the peaks to besumed with good statistics which is not
always available.
Thek'th moment of an intensity profil(s) is defined as (Groma, 1998):

fs $(S)dS
Mi(s) = = (32)

B f $1(S)dS

Borbély & Groma (2001) gave the following asymptotic expandor the second and fourth order

moments:
Ma(s) 1 L /\<p>I <s) (3.3)
S) = S— + og( — |, .
2T e aeKZr | 22 O\

s
Ma(s) 1 AN<p> . 3N2 < p? > log? (s_1>
s 3 412 412 S

where/\ = ggzbzc ander is the area-weighted average crystallite size, for sphkdrystallites:

, (3.4)

3
Eg = ?Lo.

By plotting the moments as a function sfone can readily see the type of broadening present in
the experiment and verify if the assumptions of small pket&ize or the presence of dislocations
apply. So, using this method one can easily visualize qialdly the different sources of broaden-
ing as well as the size parameter and the strain parametetsp > or < p? > can be determined
guantitatively by a fitting procedure.

An example is presented for ECAP deformed copper sampleseibend order moment is plotted in
Fig. 3.8 and the fourth order moment dividedd3yis shown in Fig. 3.9. The moments (calculated by
using the measured profile of the 111 reflection) and the fiktedretical moment functions according
to egs. (3.3) and (3.4) are plotted.
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Figure 3.8: The second order moment and the fitted theokdtination (ECAP deformed copper
sample). In the figursis denoted byj.
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Figure 3.9: The fourth order moment divided $yand the theoretical function fitted between the two
markers (ECAP deformed copper sample). In the figisedenoted byj.
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Chapter 4

Determining microstructure by the Multiple
Whole Profile fitting method

The essential parts of this dissertation are the two metbb¥sray line profile analysis: the Multiple
Whole Profile (MWP) [S4, S6] and the Convolutional Multiplehdle Profile (CMWP) [S14] fitting
procedures. The MWP procedure and a couple of problemsdblyéhis method are described and
discussed in detall. It is shown that the MWP method enablesdluate X-ray diffraction profiles in
terms of crystallite size and size distribution and distmradensities and dislocation character.

4.1 The MWP method [S4, S6]

4.1.1 The principles of the method

The aim of the MWP procedure [S4, S6] is to describe the shagehe width of measured profiles
on the basis of the microstructure. The microstructurahpeaters, especially the crystallite size and
size distribution, the dislocation density and arrangemarameter and strain anisotropy, are refined
by a nonlinear least squares procedure, the MarquardtAbevg algorithm (Levenberg, 1944 and
Marquardt, 1963). Since it is working on individual profildee measured pattern first has to be
separated into single diffraction peaks. A special progreaied MKDAT, was developed for this
separation procedure [S4].

4.1.2 Data preparation: profile separation using the MKDAT program

In the MKDAT procedure the selected overlapping region efrtteasured intensity pattern is fitted by
the sum of a background polynomial and simple analyticattions (Gauss, Lorentz, Pearson VII,
Pseudo-\Voigt or Voigt). The peak positions, the peak interssand the shape parameters are fitted
by using the nonlinear Marquardt-Levenberg least squdgesitom. For each reflection the sum of
the background polynomial and the analytical functionsesponding to the unrequired reflections is
subtracted from the measured data and only the peak profilespmnding to the required reflection
remains. The parameters of these analytical functions@renterpreted physically, these functions
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are used only to describe the shape of the overlapping regibis procedure is correct if the peak
shapes are close to the shape of the analytical functiomsingbe fitting. This may depend on the
microstructural properties of the materials, however ficacdas shown that in most cases these sim-
ple analytical functions are adequate to describe the stigihe unrequested measured peaks. This
separation procedure should be used only for data preparatid this is not the procedure intended
for evaluating the microstructure. If the overlapping begw the peaks is weak, the separation proce-
dure is simpler: in this case only the background (represkloy a polynomial) is subtracted from the
measured data and there is no need for the above mentionlgtiGdunctions, so the data and the
results of the MWP evaluation procedure are not influencethbyshape of any analytical function.
Fig. 4.1 is an example for the separation of overlapping peak
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Figure 4.1: Typical example for the separation of stronglgriapping peaks in the case of carbon
black sample. The background polynomial is giverpas- p1x and the measured data are fitted by
the functionpg + p1x+ 11(X) + 12(x) + 13(x), where:11(x), I2(x) andlz(x) are Pearson VIl functions.
For the 100 peak, the peak profile is determined by subtiabiiix), the sum of the background
polynomial and theother Pearson VII functions (004 and 101) from theeasureddata. After the
subtraction, the remaining data correspond to the pureratgg peak. The same procedure can be
applied to obtain the other peaks.

4.1.3 Data preparation: instrumental deconvolution usingthe MKDAT pro-
gram

If instrumental broadening is present, the peaks shoul®bbeated for the instrumental effect too.
In the MKDAT program a simple deconvolution (based on thehuoétof Stokes, 1948) is used for
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this purpose. In this procedure the Fourier transforms eihtieasured pealh™(L), and the Fourier
transforms of the corresponding instrumental péé, ), are calculated. By using complex division,
APP(L) = AAT((TL)) the Fourier transform of the physical and pure microstmadtpeak profile is calcu-
lated. The instrumental free intensity profile can also heri@ined by calculating the inverse Fourier

transform ofAP(L).

4.1.4 Evaluation of X-ray diffraction profiles using the MWP program

Since the MWP method is a microstructural method, the pe@ngities are not interpreted physi-
cally, so the measured intensity profiles and their Foutiansforms, as well as the fitting theoretical
functions are normalized by their maximum values in thenfitfprocedure.

The theoretical basis of the microstructural analysis & db-initio theoretical Fourier—transform
given by equations (2.50), (2.58), (2.59), (2.61), (2.62)36) and (2.47)-(2.49). There are two
possible approaches:

(i) Multiple Whole Profile fitting of the Fourier—transforms. In this procedure first thenea-
suredintensity profiles are Fourier—transformed and normaliz€den all of them are fitted
simultaneously by the normalizéleoreticalFourier—transform:

AL) = 22&8 exp{—”%z(gZC)psz (é)} , (4.1)

whereAS(L) andAS(0) are given by egs. (2.36) and (2.37), respectively.

(i) Multiple Whole Profile fitting of the intensity profiles. In this procedure first the measured
intensity profiles are normalized. Then all of them are figegdultaneously by the normalized

theoretical intensity function:
Fe(s)

TR0
whereF; is the Cosine Fourier—transform of (5.9), which is equinél® the inverse Fourier
transform ofA(L), sinceA(L) is a real and even function:

1(s) (4.2)

[ee]

Fe(s) = 2 / A(L)cog2ris) dL. 4.3)
0

In the MWP fitting procedure all profiles are fitted simultangly using the nonlinear Marquardt-
Levenberg least-squares algorithm, in which the Weighteh $f Squared Residuals (WSSR) is
minimised. In this procedure the profiles are weighted umfg. Here it is noted that the profiles
which correspond to the sangevalue but theirhkl indices are not permutations of each other (e.g.
the333and511reflections in the case of fcc cubic materials) should be techifrom the evaluation
procedure, because their contrast factors are differeshtttae theoretical Fourier—transform (2.59)
corresponds to only one contrast factor. If the intensitipraf these coincident reflections is known,

44



they can be included in the CMWP procedure, see Chapter 5doe details. The theoretical func-
tions depend on thiekl indices and on the microstructural parametensindo, the parameters of the
crystallite size distributionp, the dislocation densityg; the dislocation arrangement parameter and
the strain anisotropy parameterr a;, ap for hexagonal crystals). These microstructural parameter
are the common parameters which connect the different tigitesscduring the simultaneous fitting.
The difference between the theoretical profiles is in thilrdependence which is scaled §8C de-
pending on the (or a1, ay) anisotropy parameters. The values of the microstruchasdmeters are
refined during the fitting procedure. If the ellipsoidal si@action is used, the value of the ellipticity
parameterg is refined too. The other parameters, the lattice constantsnd c in the hexagonal
case), the absolute value of the Burgers-vedipa(dCiog or Chio are input parameters of the fitting
procedure. Since the strain Fourier—transform depends@prioducty? pCpgg (or b?2pChigo in the
hexagonal case), the valueloBndCigg (or Chio) should be known in order to determine the value
of p. The value ofCygo (or Chip) depend on the elastic constants of the materials and ordtiee @
screw character of the dislocations. However, in most céetype of dislocations is only known af-
ter the fitting procedure, by analysing the contrast fackwametersd or a;, ap) which are the result
of the fitting procedure. In this case an estimated valué,gf (or Chxo) should be given during the
fitting procedure, and the value Gfgg (or Cho) should be determined according to the resultjray

a1, ap parameters. After this, the procedure should be repeatedier to get the correct value fpr
For the method of determining tl@&go (or Ciko) constants, see Ungar et al. (1999). If the valub of
or Cnhoo (Chiko) cannot be determined, the value of the microstructurampeterp becomes uncertain
up to a scaling factor.

4.1.5 The steps of the MWP evaluation procedure

The function of the prograreval uat e is to evaluate the previously prepared data for the mianostr
tural parameters using the method of Multiple Whole Profifienfy. The steps of the evaluation
procedure are:

1. Selection of the crystal systeifhe possible selections are: cubic or hexagonal. In theviatig
the parentheses indicate the case of hexagonal system.

2. Setting the value of the input parametefBhe program prompts for the value of the lattice
constant(s), the absolute value of the Burgers-vectoCagig(or Chio)-

3. Selection of the size functiolhe possible selections are: no size effect, sphericafismtion
(default) or ellipsoidal size function.

4. Specification of the sampling of the Fourier—transform & theasured dataThe number of
samples (default: 256) and the upper limit of sampling (tefadlt is: five times the maximal
FWHM value of the Fourier profiles) may be specified.

5. Computing the normalized Fourier—transform of the measal&a. This step is skipped if the
Fourier—transforms are available from the instrumentatextion (see the description of the
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programMKDAT, sections 4.1.2 and 4.1.3) or from previous runs. The Fodrensforms are
saved after their computation.

6. Specification of the initial values of the parameters andithé of stopping.The initial values
of the fitting parameters are always saved for subsequest e limit of stopping is the con-
vergence criteria of the Marquardt-Levenberg algorithhe fitting is stopped if the specified
maximal number of iterations (default: 5000) is reached tre relative change of the WSSR
between two iteration steps is less than the specified laefie@lt: 10°°).

7. Selection of the method of fittinghe procedure of Multiple Whole Profile fitting can be carried
out by using the Fourier—transforms or the intensity prsfile

8. Fitting. In this step the values of the parameters are refined usingnii® ot program ex-
tensively modified for the MWP and CMWP procedures. The meakprofiles and the fitted
theoretical functions are plotted side by side in ordeg ehd are replotted in each step of it-
eration, so one can trace continuously how the theoreticéilgs approach the measured data.
The figure is saved after the fit converges. A typical plot ftimiy the Fourier—transforms is
shown in Fig. 4.3.

9. Printing of solutions.In addition to the resulting parametars o, €, p, R;, q (or a;, ap) the
dislocation arrangement paramekét = RS, /p (introduced by Wilkens) and the size parame-
tersD, d andLg are printed too. These size parameters are defined by eqsid#d 2), (2.13)
and (2.16), and they are calculated from the pure theotaiiwa profile using the fittech and
o values.

10. Preparation of figures.If the Fourier—transforms were fitted, the program plotsittiensity
functions too. If the intensity functions were fitted, th@gram plots the Fourier—transforms
too.

11. Saving the results and removal of temporary files.

It is noted that the actual fitting parameters used by the MWEPPGMWP methods are denoted &y
b, ¢, d, eand these parameters are related to the microstructueaheders by the following equation:

m = expb),
o =
v
q = a
b = 2
T(bgurceRSl)?’
. oexp(—%)
Re 2e

(4.4)
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4.1.6 The MWP frontend

The progranVKDAT and aWN\Vfrontend for theeval uat e program of the MWP procedure is available
on the web:htt p: // ww. r enyi . hu/ myp. The programVKDAT was developed for UNIX systems,
and its goal is to prepare the measured data for the MWP di@iuarocedure including the steps
of peak separation and instrumental correction as destnbeections 4.1.2 and 4.1.3. The MWP
frontend provides a platform-independent interface ofpteecedure: after uploading the previously
prepared data, the options of the fitting procedure can leeteel (as described in section 4.1.5) and
the evaluation procedure can be started.

Fig. 4.2 shows the control panel of the MWP frontend. A dethdescription of the frontend can be
found at the MWP documentation page:

http://ww.renyi.hu/ myp/ doc

File Edit View History Bookmarks Tools Help

| & -0 - @ 0 (3 [ rpumewn renyt hu/mup/program/mup-un el [-[o] [G]s

| ®Getting started [y Latest Headlines

Evaluation of diffraction peak profiles using the method of
Multiple Whole Profile fitting

Files
‘Please entet the nare of the sarnple: _sxampls—cu
Selection of the crystal system
The crpstal systam i
abic gttty @
hescagonal
Input parameters

2 the valus of the dbsolute valus of the Burgers vector {innuy: |0, 25484 1

[0.3040

afthe 7 5F the coystal

Selection of the size function

T progzam will se the sphesicsiae fenction,
The progzam will se the llipsoidal size function. &

Th proguamn il disable the size #if

Sampling of the Fourier transform of the measured data

Pleusspecify e oo o splas: 256

Please specity the upper Linait of sampling (in FEB wais): |5
o

dats A2’70

recomsputs the [.§

Initial values of the parameters

Done

Figure 4.2: The control panel of the MWP fronterd1 p: / / ww. r enyi . hu/ map
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4.2 MWP application to deformed Cu [S4, S6] and ball milled
PbS [S9]

The MWP method was applied to polycrystalline copper saspi®9.98% purity deformed by ECA
(Equal Channel Angular) pressing and by removing a surfagerlof 10Qum with chemical etching
[S4, S6]. The results of the MWP fit can be seen in Fig. 4.3. Toegrure provided the following
values for the microstructural parametera:= 56nm,c = 0.34,q=164,p =15 1015512 and
Re =5.1nm [S4, S6].

1.2

1
measureddata @ ===0 0
theoretical curves _

200 220 311 222 400

Amplitude

o
'S

0.2

AL =200 nm

Figure 4.3: Example for the MWP fit (copper sample). In thisifegthe Fourier transforms of the
measured and fitted profiles are plotted as a functidn ofhe peaks corresponding to the different
hkl indices are plotted one after the other. Theanges corresponding to the different peaks are
independent, and extend from 0 to 200 nm for each peak.

The MWP procedure can be used to determine the microsteuotsystematically prepared samples.
Such an example is the fcc galena: a series of natural Pbé&@atamples were ball-milled and in
some cases heat treated. These samples were studied bydKfragtion together with samples from
ancient Egyptian make-ups fabricated from galena (Wdl899; Martinetto et al., 2000). The diffrac-
tion patterns were measured by the high resolution powdfeaction beam line, BM16 of ESRF in
Grenoble, France (Martinetto et al., 2000). By evaluatimgX-ray patterns of the archeological and
systematically prepared samples a map of the microstrigtas obtained. The microstructural pa-
rameters are considered as fingerprints of the state of ttexiada. By comparing the microstructural
parameters of the archeological samples to that of thenhidlbd and/or heat treated galena samples,
the ancient manufacturing practices were traced back [B9]as found that the ancient specimens
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have been gently crushed and no heat treatment was used loedhéreatment was carried out at
temperatures not higher than about 30

Fig. 4.4 shows the MWP fit of the archeological sample E2310%his case the procedure provided
the following values for the microstructural parametars= 87nm,0c =0.72,q= —4.5,p=1.7-
1016%? andRe = 10nm.

1.2 T T
measured data —
theoretical curves -

111 200 220 311 222 400 331 420 422

Amplitude

AL = 500 nm
A——

Figure 4.4: The MWP fit of the archeological galena samplelB83 TheA(L ) values of the measured
and fitted profiles are plotted as a functiorLof

PbS, galena is an ionic crystal, where it is not trivial ifldcations are created by plastic deformation
(Sprackling et al., 1976). For this purpose, Martinetto emdorkers (2002) have carried out detailed
transmission electron microscopy (TEM) on ball milled Plogstals. A typical TEM micrograph in
Fig. 4.5 shows the extended dislocation network in one ofi#ffermed PbS specimens (Martinetto
et al., 2002).
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1Ni'm

Figure 4.5: PbS coarse particle bright-field TEM micrograpla dislocation network densely con-
nected.
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4.3 MWP application to Al-Mg alloys [S13, S14]

In [S13, S14] the effect of the nominal Mg content and theindltime on the microstructure and the
hardness of mechanically alloyed Al-rich Al-Mg solid satuts were studied.

A series of Al-Mg samples were prepared from high purity dhiom (99.9%) powder and high
purity magnesium chips (less than 2 mm thick and 5 mm longég mkchanical alloying was carried
out using a Spex8000 shaker miller at room temperature.

Aluminium with 6 wt.% magnesium alloys were milled for peigof 0.5, 1, 3 and 6 h. Additionally,
a series of Al - x wt.% Mg (x=0, 3, 6) were milled for 3 h at the saoonditions to study the effect
of the nominal Mg content. The milled powders were compaetied pressure of 1 GPa in air at
room temperature without any lubricant. The microstruetaf both the ball-milled powders and
the compacted specimens were studied by X-ray line profidyars. The diffraction profiles were
recorded by a Philips X’pert powder diffractometer usinga@ode and pyrolithic graphite secondary
monochromator. Step size and step time were 0.030 and 2p sisspectively. The X-ray diffraction
peak profiles were evaluated for the crystallite size distion and the dislocation structure by the
MWP fitting procedure. The measured and the fitted Fouriasfaams are shown in Fig. 4.6 for the
Al - 6 wt.% Mg specimen after ball milling for 0.5 h.
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Figure 4.6: The MWP fit of the Al - 6 wt.% Mg specimen after ballling for 0.5 h. TheA(L) values
of the measured and fitted profiles are plotted as a functidn @he difference plot is also given at
the bottom of the figure.
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The volume-weighted crystallite size, the dislocationsignthe hardness and the Mg concentration
as a function of the milling time and the nominal Mg conterd plotted in Figs. 4.7 and 4.8, re-
spectively. For the Al - 6 wt.% Mg samples the Mg concentraticcreases with milling time up to
3 h. After 3 h there is no change in the Mg concentration. Tlséodation density increases while
the crystallite size decreases rapidly with milling timetad h. Between 1 and 6 h milling time the
dislocation density and the crystallite size do not changeificantly, as shown in Fig. 4.7. In the
case where the nominal Mg content changes and the milling pieniod is fixed to 3 h, the Mg con-
centration in the solid solution and the dislocation dgrisitrease while the crystallite size decreases
and the crystallite size distribution becomes wider wittr@asing nominal Mg content, as shown in
Fig. 4.8.

The hardness of the compacted samples was also measuregthysdasing Vickers indentation
tests. For hardness measurements the ball milled powdeescsenpacted. To check the effect of
compaction on the microstructure, the parameters of thetallite size distribution and the dislocation
structure of the compacted specimens were determined kay Xliffraction peak profile analysis.
Comparing the microstructural parameters obtained befodeafter compaction it is concluded that
this procedure has only slight effects on the microstrgctiiithe ball milled specimens. This means
that the hardness measured on the compacted samples ehaeascalso the mechanical properties of
the milled Al-Mg alloys.

By analysing the hardness values for the compacted spesiih&mas found that with increasing
milling time, the hardness increases up to 3 h due to theasarg Mg concentration, the increase of
the dislocation density and the decrease of crystallig dipon increasing milling time from 3to 6 h
the hardness does not change significantly since neithéigheoncentration nor the microstructure
changes. It is found that the Mg concentration in Al-Mg afldyas a considerable effect on the
defect structure. With increasing nominal Mg content of plegvder or increasing milling time, the
dislocation density increases and the character of distotais shifted toward edge type. These
changes can be attributed to the increase of the solute Mgeotmation which increases the pinning
effect of Mg atoms on edge dislocations thus hindering taemnihilation. After 3 h milling the Mg
concentration in solid solution is much higher than the kopiim solubility limit. The hardness
obtained for the mechanically alloyed Al 3 wt.% Mg specimerin good correlation with those
predicted from the Hall-Petch relationship (Hall, 1951tdPe 1953) determined for bulk samples in
other papers.
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Figure 4.7: The volume-weighted mean crystallite size imamaeters (open squares), the dislocation
density in 18*m~2 (solid squares), the Mg concentration in wt.% (open triagghnd the hardness
in 108 Pa (open circles) as a function of the milling period for thec@men of Al-6wt.% Mg nominal
composition.
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Figure 4.8: The volume-weighted mean crystallite size imamaeters (open squares), the dislocation
density in 18*m~2 (solid squares), the Mg concentration in wt.% (open triagghnd the hardness
in 108 Pa (open circles) as a function of the nominal Mg contenttferspecimens ball milled for 3h.
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4.4 MWP applicationto Ti[S12, S21] and SiN4 [S1, S6]

Hexagonal Ti samples were investigated in [S12]. Nanoahysé titanium specimens were produced
by severe plastic deformation (ECA pressing) and X-rayaifiograms were measured by a Philips
X’pert diffractometer. The profiles were evaluated using WP method and the procedure pro-
vided the following values for the microstructural paraemst m = 38nm,c = 0.49, g; = —0.05,

0 =0.18,p=8.6- 1014% andM = 6.5. The results of the MWP fit can be seen in Fig. 4.10.

The large dislocation density pf~ 9 x 1014 m~2 is confirmed by detailed high resolution TEM as
shown in the micrograph in Fig. 4.9 (Zhu et al., 2003).

i

(ll

3 T b)

Figure 4.9: (a) High resolution TEM image of a low-angle grAbundary with a misorientation
of 6.5°, (b) Fourier-filtered image from the white frame in (a), sivagvthe dislocation arrangement
in the grain boundary.

From the analysis of the measuimgdarameter valueqz(Lm) andq(zm), which are gasily derived from the
a; anday fitting parameters according to equaticqﬁ@) =a and q(zm) = —2% + a2 (Dragomir

3\a
& Ungar, 2002), the active slip system types can be concly8éd]. In the ECAP deformed Ti

specimen it was found that the dominant active slip systggasyare(a) and (c+a) [S11, S22], in
good correlation with TEM observations (Paton et al., 1970)

Another hexagonal samples were investigated in [S1, SGhr@ercial S§N4, samples (powder LC12
from Starck Ltd, Germany) were investigated by X-ray difbametry. The results of the MWP fit
can be seen in Fig. 4.12.

Fig. 4.11 shows the TEM micrograph of thesSi particles and the particle size distributions mea-
sured either by TEM or X-ray line profile analysis. A good etation between the two size distribu-
tions determined by two completely different methods casden.

The microstructural parameter values determined by Xireygrofile analysis are listed in Table 4.1.
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Figure 4.10: The MWP fit of the hexagonal Ti sample. R{&) values of the measured and fitted
profiles are plotted as a function bf

Table 4.1: Microstructural parameters obtained for naysiatline SgN, determined by the MWP
method

m[nm] o p[I0*¥*mM 2 | M | a4 | a
20@) [0.65(B)| 75(8) |2.1|354]-1.93

150 Ball milled
% )
c i SiN
g™ | . aa |0
2 00 | Aay
5] | lo.02
5 754 TEM
2 |
= | /
3 507
25
el L } T - T . ; 0.00
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size [nm]

Figure 4.11: (a) TEM micrograph of thegBl, particles, (b) particle size distributions measured by
TEM and X-ray line profile analysis.
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silicon nitride

Normalised amplitude

AL = 400 [nm]

Figure 4.12: The MWP fit of the hexagonakBiy sample. Thé\(L) values of the measured and fitted
profiles are plotted as a function bf The difference plot is also given at the bottom of the figure.
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4.5 MWP evaluation of carbon black samples by assuming ellip
soidal crystallite shape [S4, S5, S6, S8]

The microstructure of hexagonal carbon blacks were ingatdd in [S5, S8]. Carbon black has the
turbostratic layer structure, therefore the evaluatioma@nly be carried out by assuming that the
coherently scattering domains are of ellipsoidal shapefiatallites (Warren, 1965). The measured
X-ray profiles were evaluated using the MWP procedure wighetthiditional assumption that the crys-
tallites are rotational ellipsoids (see section 2.2.4 forerdetails about the ellipsoidal size function).
Untreated, heat treated and compressed at 2.5 GPa carlmbnsplecimens were investigated. The
measured X-ray profiles were evaluated using the MWP praeeahd assuming ellipsoidal crystal-
lite shape. The value @f the ellipticity parameter is found between 0.5 and 1.2.

1.00-
0,75\
05041

0,254

Normalised amplitude

0,00

AL=4nm

Figure 4.13: The MWP fit of carbon black sample. R{&) values of the measured and fitted profiles
are plotted as a function &f The difference plot is also given at the bottom of the figure.
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Chapter 5

Determining microstructure by the
Convolutional Multiple Whole Profile fitting
method

The CMWP procedure and a couple of problems solved by thikodedre described and discussed
in detail. It is shown that the CMWP method enables to evalXatay diffraction patterns in terms
of crystallite size and size distribution, dislocation gi¢éies and dislocation character, without the
necessity to separate overlapping diffraction peaks oetmadvolute instrumental effects. It is shown
that the CMWP method makes it also possible to obtain theityesusd character of stacking faults
or twin boundaries. A special application of the CMWP pragedio solve the problem of unusual
narrowing of the first few diffraction peaks in ball milled diides is also presented.

5.1 The CMWP method [S14]

The Convolutional Multiple Whole Profile (CMWP) fitting predure works as a computer program
developed for the determination of microstructural paramsefrom diffraction profiles of materials
with cubic, hexagonal or orthorhombic crystal lattices45but works in principle, for all crystal
systems. Unlike the MWP method, which uses the Fourier toamsof the separated profiles, the
CMWP method works directly on the measured intensity pat&d the separation of the profiles is
not needed. Another difference is, that there is no needneciothe measured data for the instru-
mental effect. The instrumental effect is added to the #tezal (physical) pattern by convolution,
thus avoiding numerical division of small numbers.

5.1.1 The principles of the method

The whole measured powder diffraction pattern is fittedatiyeoy the sum of a background function
and profile funtions obtained as the convolution of ab-anitieoretical functions for size, strain and
planar faults and the measured instrumental profiles [S14]:
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ltheoretical = BG(26) + % ||\r}||,(o[x| hkl(ze — 298"'), (5.1)

whereBG(20) represents the backgrourfj, is the peak intensity,@8 is the 2 value at the peak
center and ™! is the theoretical profile for thkkl reflection, which can be expressed as the convo-
lution of I | themeasurednstrumental profile and ab-initio profile functiong¥l, the theoretical
size profile,|{i| , the theoretical strain profile for dislocations arff}, s the theoretical profile

function for planar faults:

hkl __ (hkl hkl hkl hkl
™ = linstr. * lsize* ldisi. * Ipl taults (5.2)

This convolutional equation is based on equation (2.503mivy Warren & Averbach (1952). The
equation can be easily extended to include other physitedtefas further sources of broadening. In
order to get realistic results, not all the effects shouldnoctuded without consideration in the eval-
uation procedure, it is better to have some initial knowedgout the nature of the effects causing
the broadening and only the physically relevant effectaikhbe included in the evaluation. There
are several possibilities to obtain this preliminary knesie about the nature of the microstructural
effects. For example TEM observations can be used or thétaginad information provided by the
Williamson-Hall plot or the momentum method on one of theawfbns can be used. In the calcula-
tion of the theoretical functions it is assumed that the tatlites have spherical or ellipsoidal shape
with lognormal size distribution and strain is caused byodigtions. Strain and size anisotropy are
taken into account by the dislocation contrast factors &edetlipticity of crystallites, respectively.
The mathematical formulae together with the dependenchemitcrostructural parameters of these
theoretical functions are given in Chapter 2. Note that irstroases the Fourier transform of the
profiles is expressed in an analytical form, which is favblegasince in the CMWP method, the
convolution is carried out in the Fourier-space andIff&profiles are obtained by inverse Fourier-
transforming the product of the theoretical Fourier transfs and the (complex) Fourier transform
of the corresponding measured instrumental profiles. Aargblssibility would be the usage of the
definition of the convolution:

(F+9)0) = [ fOgx-Dt (5.3)
however, it is simpler and considerably faster for obtajrtime theoretical intensity profile to directly
use the Fourier transforms provided by theory and perfagraminverse Fourier transformation once
after the multiplication of the Fourier transforms, thawdrse Fourier transforming all the theoretical
Fourier transforms and using the convolutional equatioB)(5Depending on the effects included,
the fitting procedure can provide the following microstwrel parameters: median and the variance
of the size distribution, the ellipticity of the crystadig, the density and arrangement of dislocations,
the strain anisotropy parameters and the probability ofigaldaults. Since it is a microstructural
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method, thel{i, and DX values are not modeled on the basis of the crystal structbey, are
treated simply as free fitting parameters. The fit should beechout in two steps: in (i) thd{},‘;‘x
and 238‘(' parameters are fitted together with the microstructuradmpaters (a few steps of iteration
is usually enough to determine thi, and B parameters which is the goal of this step; in this
step the values of the physical parameters are not intexrand in (ii) the previously fittet{},kA'>< and
200K parameters are fixed and only the physical parameters anedefi

The CMWP procedure treats the reflections which correspmtitktsame value but theihkl indices
are not permutations of each other (e.g.388and511reflections in the case of fcc cubic materials).
In this case both profiles are added to the model based, gedgrattern and an intensity ratio is
introduced for this purpose (the total intensity at maximignequal tol,\r}l"A'x in this case too). By
avoiding the need for the profile separation and instruni@ataiection the CMWP method is free
from the uncertainties due to these steps and it is much ndeiguate and superiour in a sense than the
MWP method for evaluating full powder patterns with ovefdaqy peaks. However, if the overlapping
of the profiles is weak and they are measured separately eors@mament with negligible instrumental
effect, like a Nonius FR 591 special double crystal high gtgan diffractometer (see e.g. Ungar et
al., 1998), it is more convenient to apply the MWP method. He tase of separately measured
profiles, before applying the CMWP method the profiles shbeltinked into a pattern, the empt 2
regions between the peaks should be filled with artificiahdatd in this case the background of the
generated pattern usually has larger steps because offérexi level of background of the different
peaks. This causes uncertainties when determining thegb@maokd which is not present when using
the MWP procedure in these cases. The situation is the santbdcevaluation of the measured
profiles of single crystals, where obviously no powder pattan be measured. Another case when
the MWP method is more suitable than the CMWP when only thei€otransforms of the profiles
are available. In the CMWP procedure the measured and ngasherated pattern given by eq. (5.1)
are compared using the Marquardt-Levenberg nonlineat sgpsres algorithm (Levenberg, 1944
and Marquardt, 1963) and the fitting procedure provides #rameters of the ab-initio theoretical
functions as well as the refined theoretical powder patteigs. 5.1 and 5.2 demonstrate the results
of the CMWP fitting procedure for Al-6Mg sample ball milled#® hours, the measured and the fitted
pattern are shown in both linear and logarithmic scale aeit thfference is shown in linear scale.
The results for the microstructural parameters are alscated.

5.1.2 The JAVA frontend of CMWP

There are two main options to use the CMWP method: the firsd isuh directly the program
eval uat e (which is part of the CMWP package) and the second is to usi iity WWVfrontend.
Latter will be described in the next subsection. Bval uat e program is a frontend written in the
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Figure 5.1: The measured (solid lines) and theoretical fitted (dashesk)iintensity patterns for Al-6Mg
sample ball milled for 6 hours as a function &. ZI'he difference plot is also given at the bottom of the figure.
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Figure 5.2: The measured (solid lines) and theoretical fitted (dasheeb)iintensity patterns for Al-6Mg
sample ball milled for 6 hours as a function & glotted with logarithmic intensity scale). The results tioe
microstructural parameters are also indicated.
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shell script languagesh and it is enhanced with graphical functions written in 8#A program-
ming language. Fig. 5.3 shows thAVA panel of theeval uat e frontend. All the parameters can be
adjusted in this panel and all the functions of the fitting barreached by pressing the appropriate
buttons. AnothedAVA tool, thenkspl i ne program can be used for the interactive determination
of the base points of the background spline. See Fig. 5.4rf@xample of the background spline
determined bykspl i ne.

CUEBIC: vl HEXAGONAL: | ORTHOROMEIC: ]

lat_a (CUB|HEX|ORT) [nm]: 0.5287 lat_b (ORT) [nm]: lat_c HEX|ORT) [nml:
Burgers vector [nmj: 0380318 Wavelength [nm]: 0.15406 ChOO0 or Chk0: 01

Don't include size effect [ ] Use ellipsoidal size func: [ ] Use individual € factors: [ ]
include St Faults effect [ stacking.dat file: | [ Browse
lIse weights: [wd Fit peak int. & pos.; fal
Use instrum. profiles: Instrum. profiles dir.: ColF-inst-dlat ‘ Browse
FT limit Gf no instr. eff.: Profile cutting parameter: |10.0
N1 1024 N2: 1024
Min. 2*theta: 25 0000 Max. 2"theta: 1500000
FIT limit: le-9 FIT max. num. of iter: 500
init_a (CUB): _9.00215 linit_al (HEX|ORTY: | init_a2 (HEX|ORTx: ‘
a_fixed: = al_fixed: m a?_fixed: =
init_a3 (ORT): finit_a4 ORT: init_as (ORT: |
a3_fixed: ), ad_fixed: =] a5_fixed: Bl
init_epsilon: 10 apsilon_fixed: ] a_scale: 10
init_b: -1.83397 b_fixed: ] b_scale: 1.0
init_c 1932841 c_fixed: | c_scale: 1.0
init_d: 62.0861 d_fixed: | d_scale: 1.0
init_e; 00505481 e_fixed; | e_scale; 1.0 [
init_st_pr: |str,fixea: | d*e_fixed: £
Call MKSpline Call MKSpline2 Clone INI files Save INI files
Reystart FIT | Stop FIT Update Params Yiew Solutions View FIT Exit

Figure 5.3: ThelAVA panel of the CMWP frontend
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Figure 5.4: Therkspl i ne program of the CMWP package
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5.1.3 The WEB frontend of CMWP

The CMWP procedure can also be used vidW/frontend:
http://ww.renyi.hu/ crp
This latter option has many advantages compared to thequewine:

1. it is platform-independent, only an internet connect@ord a machine with a working web
browser is needed,

2. there is no need for installation,
3. the frontend is served by well configured and relativesg faachines,
4. the program and the code behind the frontend is continyoaintained.

Fig. 5.5 shows the control panel of the CMWP frontend, a meteited description of the frontend
can be found at the CMWP documentation page:p: / / www. r enyi . hu/ crwp/ doc

"L';é I < = |
File Edit Yiew History Bookmarks Tools Help
E -0 @ (G [ hmpeww renyi hujcmwp/programycriwp run himl [-[»]
# Getting Started E5Latest Headlines
Evaluation of diffraction patterns using the method of I
Convolutional Multiple Whole Profile fitting
Files
‘Please entet the rarne of the sample: [EXaMple-galena
Selection of the crystal system
T sl spstam i
abic gttty @
texagonal
Input parameters
Fleas
Pl of the L |
‘Please entex the valus of the sbsoluts saluz of the Busperswector inruy: (0,4 19314
Plex lo12
Fluase entex the savilength (inomy; |0, 154
of he atti it capstal
Instrumental profiles
Set s fyou bave instournent profiles: [+
ofthe |LaB&-inst-dat
The interval used for fitting and plotting
T invescal used o fitting s ploteing s [aiuc ]
Flaase specify the value i 3|30
Plessespacity the wlus of vasc in degrersy: | 1 40
fieles, 21 the ot beused
Selection of the size function
=
Done

Figure 5.5: The control panel of the CMWP frontend
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5.1.4 The CMWP evaluation procedure

Using the evaluation program (by runniegal uat e or by using theNMWfrontend) one can evalu-
ate the previously prepared and uploaded data for the ntiaotgral parameters using the CMWP
method. The steps of the evaluation are the following:

1.

2.

10.

11.

Specification of the sample name.

Selection of the crystal systeniihe possible selections are: cubic (default), hexagonal-or
thorhombic.

. Setting the values of the input parameterbe value of the lattice constants, the absolute value

of the Burgers-vecto oo (or Chyo in the case of hexagonal crystal system) and the wavelength
of the measuring instrument have to be specified.

. Specification of the instrumental profildsinstrumental profiles are available, the inclusion of

the instrumental effect can be selected and the name of streimental profiles directory can
be specified.

. Determining the background:he base points of the background spline should be giverinte

actively by using thexkspl i ne program.

. Peak searchingln this step the indices, the centers and the maximal irtieasaf all peaks

should be determined.

Specification of the interval used for fitting and plottiigere can be specified the lower and
upper limit of the interval used for fitting and plotting (i® 2egrees).

. Selection of the size functiofhe possible selections are: no size effect, sphericafsimdion

(default) or ellipsoidal size function.

. Specification of the sampling of the theoretical Fouriemgtorms. The Aji, amplitude ratio

limit of the normalized theoretical Fourier transforms danspecified, see section 5.1.6 for
more details. It is noted here that this limit should be djtionly in case if no instrumental
profiles are available.

Specification of the sampling of the simulated powder pattiata. The value ofN1, N2 and
the profile cutting parameter should be specified here. Fodétails of the meaning of these
parameters see sections 5.1.7 and 5.1.8.

Specification of the initial values of the parametérke initial values of the fitting parameters
have to be specified. They are always saved for subsequentTaere is an option for fixing
the value of any parameter, which means that the value ofpr@meter will not be refined
during the fitting procedure. Fixing the value @f e means that the value of the parameter
M* is fixed. This option can be used if the program enters intosgmatotic minimum (the
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12.

13.

14.

15.

16.

17.

values ofp andRg tend to infinity and zero, respectively, and the asymptddodard errors
of the parameterd ande become extremely large, larger than 100%). The scales dittimg
parameters can also be specified here.

Peak parameter refinement and weightiktgre the refinement of the peak positions and peak
intensities can be chosen. If the peaks have very differgansities, you can choose here to
use weights in the fitting algorithm (see section 5.1.10 forendetails about the weighting
algorithm).

Fit control. The limit of stopping is the convergence criterium of the Nlardt-Levenberg
algorithm: the fitting is stopped if the specified maximum f@mof iterations (default: 200)
is reached or if the relative change of the WSSR between ®vatibn steps is less than the
specified limit (default: 10°).

Fitting. In this step the values of the parameters are refined usingntlp ot program exten-
sively modified for the MWP and CMWP procedures. The measanetthe fitted theoretical
pattern are plotted and are replotted in each step of iteradb one can trace continuously how
the theoretical pattern approaches the measured data.gline i saved after the fit converges.
A typical plot for fitting is shown in Fig. 5.2.

Printing of solutionsThe resulting physical parameterso, €, p, Rg, g (or a;, a2), o together
with the dislocation arrangement parametEr = Rg,/p and the size parametesandL are
printed.

Preparation of figuresThe program plots the measured and theoretical fitted pattegether
with their differences in linear scale and the data is samedfile containing 4 columns:82the
measured intensities, the fitted intensities and theiedifice. A plot with logarithmic scale is
also created.

Saving the results and removal of temporary files.

5.1.5 Determining the background

The background functioBG(20) is given by an analytical function.

By giving the list of the relevant base points of the physisatkground, the background func-
tion is determined as the interpolatedbic splinecorresponding to the specified base points. Fig.
5.6 shows an example for the spline background. The basés@oimindicated in Table 5.1. Fig. 5.4
shows the spline background of a real sample.

Another possibility is to use a sum aegendre polynomialas the background. In this case, the
coefficients must be specified. The Legendre polynomial®ehegonal functions, so there is no
dependence between the coefficients.
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Figure 5.6: Example for a cubic spline, which can be used akdraund. As it can
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Table 5.1: The base points for the example spline background
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spline base points
interpolated spline function
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spline goes through the points very smoothly.
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5.1.6 Sampling of the Fourier transforms

In the CMWP procedure the sampling of the Fourier transfodeyends on whether instrumental
broadening is present or not.

¢ Ifthere is no instrumental effect, the Fourier transformesevaluated with an arbitrary precision
specified by the user of the program. The sampling of the #teat Fourier transform is
determined byA;in, an amplitude ratio limit: for each reflection, the normatiztheoretical
Fourier transform is calculated with equidistant sampfiegn L = 0 to LIK whereLX is
defined by the following equation% = Ajim-

¢ Ifinstrumental profiles are available, the sampling of teoretical Fourier transforms depends
on the Fourier transform of the measured instrumental poffbince the measured instrumen-
tal profile is represented by a set of numerical data whichiteates at a finite @ value, its
Fourier transform is periodic. If the sampling of the instental intensity profiles is equidis-
tant and the intensity values are given in points with a distaof AKjnstr, the period of the
instrumental Fourier transforms EKiT This period determines the maximumvalue for
calculating the theoretical Fourier transforms: it haserse to calculate the theoretical Fourier
transform above this value and include the other maximaeirtbtrumental Fourier transform
in the convolution. Therefore, the Fourier transforms alewdated with equidistant sampling
fromL =0 to LK whereL[X is theL value whereAlKl | the Fourier transform of the mea-
sured instrumental profile has the first minimum value. Thiki® is determined as follows:
the (complex) instrumental Fourier transforf,st; (L) is calculated fromk = 0 by increasing
L with small steps and in each point the intedralL) = fL |Amstr_(L/)|d L' is calculated and
the calculation is stopped ifyt (L) exceeddinst (0) = Iiwsktf,othe maximum intensity value of

the instrumental profile. The so obtainedralue is corresponding approximately to the sec-
ond maximum ofAns (L), so the correct value fae?X is half of thisL value (where the
instrumental Fourier transform has its first minimum value)

Fig. 5.7 shows the Fourier transform of a measured instrtamhprofile, the periodic function
is plotted until its second maximum value. The period of thisction is 1526 nm, which is in
good agreement with the sampling of the measured instriaherdfile: the instrumental peak
is measured in equidistantly sampled poil{K: = 0.00065%1, so the calculated period of the

Fourier transform istny quist= & =15381m

Depending on the value &fX . the number of Fourier samples is:
NeT = 2LRGAKP, (5.4)

where:

AKP = z {sin(zeB-'_ P) —sin (21[3” , (5.5)
A 2 2
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and the profile cutting parameter is denotedrbgnd the B value of the peak center is denoted by
20g. So by using this sampling the Fourier transforms are caledl equidistantly at points with a

. R | . . . 1 b o
distance ofAL = Neo = SAKP and the period of the inverse Fourier transformgs = 2AK™. This

means that the peak intensity profile has minimums at theiit AKP (whereKg = 23'}?95) and

it is cut at these points. P is small, this means that it is cut approximately at the o8t + P.
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Figure 5.7: The absolute value of the Fourier transform ahatrumental profile as a function af
It is plotted fromL = O until its second maximum value.

5.1.7 Sampling of the intensity patterns

In the least squares algorithm, the value of the theoratibahsity pattern is required at th@ Lalues

of the measured pattern data. However, since the measutietinpean contain many data points,
by calculating the theoretical pattern only at relevantand by using simple linear interpolation
between these points, considerable speed-up can be atimete evaluation procedure. These rel-
evant points are determined by two parametéigis a parameter which represents an equidistant
sampling in the measured2ange and the theoretical pattern is calculated in additipositions
whose number idl. These points are selected around the measured peaks husifayjowing algo-
rithm:

1. the measured@ange is divided intdN; equidistant sub-intervals.

2. in each sub-interval additional points are added eqtaidily where the theoretical pattern is
also calculated. The integral of the background strippedsuesd pattern is calculated for
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the n-th sub-interval. Denoting this integral hyand the whole area under the background
stripped measured pattern by, the number of the additional sampling points added in the
n-th sub-interval areNgll—”.

pat

So the total number of sampling points i + No.

5.1.8 The profile cutting parameter

The theoretical intensity profiles are calculated only ia goints corresponding to the sampling
determined byN; andN> (see the previous section for the details). Since the ievéosirier transform

is also periodic, the profiles cannot be calculated in theee6 range, and the usage of a cutting
parameter is necessary. It is noted that the inverse Fauaiesform is periodical il only and not

in 26, this is the reason why the cutting is performedimnd not in 3. The profiles are evaluated
only in the proximity ofAKP of the corresponding Bragg positions, where P is the “prafiiting
parameter” andKP is defined by eq. (5.5). As we have seen in section 5.1.6, thedoef the inverse
Fourier transform is two timeAKP, so it has a minimum value at the distanceMf®, where it is
cut. The theoretical intensity pattern is put together ftbmbackground and the theoretical intensity
profiles sampled in the manner described above.

5.1.9 Instrumental profiles

In the CMWP procedurg®! , the measured instrumental profiles corresponding tbkhiadices are
used directly. The ideal sample for measuring the instruai@nofiles has the following properties:

1. it should possibly have a large number of well separated@reflections in the whole investi-
gated B angular range.

2. it should be strain free with a large enough grain size deoto avoid size broadening, this
way it shows only the instrumental properties.

These conditions are more-or-less well satisfied in the ohtaBg specimens provided by the Na-

tional Institute of Standards and Testing (NIST). The CMWR8Ileation program selects automati-
cally the nearest instrumental profile to each of the peakecasf the evaluated pattern. Since the
overlapping between the peaks of the instrumental patiernsgligible, it is easy to separate the
spectrum (e.g. with the progral{DAT, see section 4.1.2 for more details). Fig. 5.8 demonstthées

angular dependence of the instrumental broadening meheuarthe high resolution powder diffrac-

tion beam line, BM16 of ESRF in Grenoble, France (Martine2@00). Fig. 5.9 shows a part of the
instrumental pattern of a Philips X'Pert powder diffractter measured ooaBg sample.
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Figure 5.8: The FWHM values of the instrumental profiles nuead on the high resolution powder
diffraction beam line, BM16 of ESRF in Grenoble, France, amation ofK for Si and NaCl samples.
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Figure 5.9: Part of the instrumental pattern of a Philipsettfowder diffractometer measured on a
LaBg sample.
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5.1.10 Weighting algorithms

Without proper weighting the least squares algorithms &mangly influenced by the points with
largey values (these points are overweighted). If the differeret&vben they values is significant,
the usage of weighting is justified. In the MWP method the psfare normalized, so there is no
need for weighting. In the CMWP method the intensity of theasweed peaks can be different by
orders of magnitude.

The intensity maxima decrease witB &ince the atomic scattering factors decrease witard, on
top of that, the structure factor can also cause significéfgrences in the peak maxima. A further
effect can be caused by texture. The CMWP program offerseéappropriate weighting if needed
in order to take into account the peaks with smaller intgnsiaxima. In the least squares method
the weights are usually/$?. A special weighting is used for the CMWP procedure in whicé t
profiles are weighted uniformly (provided that the overiagdetween the peaks is weak), however,
the smaller peaks have larger weights. The weights are giueirom the maximum intensity values
according to the equation:

Wi (26;) = max{I X, wherg26; — 26| < P}. (5.6)

In this equation theJMAX intensities are the background-stripped peak intensifigjsare the peak
centers andP is the profile cutting parameter. The actual weights useterid¢ast squares procedure
are the% values.

Fig. 5.1(I) shows the intensity pattern and the correspondinglues for a&CdF, sample ball milled
for 30 minutes as a function function 082 By using these weights, the results provided by the
CMWP procedure are in better correlation with the resulthefMWP procedure, where the peaks
are also uniformly weighted. It is noted that due to the défe weighting algorithms, a difference
is expected between the results of the MWP method on thesitygorofiles, the results of the MWP
method on the Fourier transforms and the results of the CMWthod. The usage of the weights
1/y? is also possible in CMWP, however this is not optimal if theeleof the background is elevated.

5.1.11 Interpretation of the errors of the fitting parameters

In the least squares procedures the errors of the fittingyeteas are usually given by their confi-
dence levels. In the fitting algorithm ghupl ot (which is used by the MWP and CMWP procedures
also) the error estimates of the parameters are given rdtaerconfidence intervals. These error es-
timates are calculated from the variance-covariance rnatter the final step of the iterations. These
estimates are the so called “asymptotic standard errorsicfware given by the progragnupl ot

at the end of the fitting). They are calculated as the standiewthtion of each parameter. It should
be noted, that these asymptotic standard errors are usnedtyoptimistic and therefore should not
be used instead of the confidence levels. However, thesepasiiorstandard errors can be used as a
gualitative measure of the fit.
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The prograngnupl ot also gives a correlation matrix, which indicates the catreh of the parame-
ters in the region of the solution. The meaning of the elesefthe correlation matrix is: if the value
of a parameter is changed, in this way increasing the WSS ith@ changing of the other parameter
compensate? The elements in the main diagonal elementtargsdl (they correspond to autocor-
relation) and if all parameters were independent, all oghements would be nearly 0. Two different
parameters which completely compensate each other wouiddraelement of unit magnitude, their
sign is depending on whether the relation is proportionahegrsely proportional. If the magnitudes
of the non-diagonal elements are small, it means that tlhmaists of the standard deviation of each
parameter are close to the asymptotic standard error givgnupl ot .

5.1.12 Convergence and numerical stability

By using the Marquardt-Levenberg nonlinear least squdgesitnm MWP and CMWP tries to find
the minimum value of WSSR in a multi dimensional parametacsgthe dimension is denoted by
and it is the number of the fitting parameters). In the nom@indarquardt-Levenberg algorithm the
gradient vector (whose components are the partial derasibf WSSR as a function of the fitting
parameters) is calculated and the parameter values ardieagodccording to the direction of the
gradient vector and a step parameter caleth order not to jump over the minimum - which would
be the solution - the step is modified adaptively, i.e. afterhestep of the iteratior) is either
multiplied or divided by a numerical factor and, if the WSSPbetter in the new point, the new value
for A is accepted. Depending on the properties of thdimensional surface, finding the physical
minimum is not a trivial problem since local (hon-physicalinimums can also be obtained. If this
surface has a sharp minimum there is usually no problem. Mewit is flat, there is a chance to find
an inappropriate minimum. By changing the initial valuesh&f parameters and examining the value
of WSSR and the residuals corresponding to the final soluencan try if the solution corresponds
to the absolute minimum or not.

In the following an example will be presented for the exartioraof the stability of the solution by
running systematically selected fittings starting fronfediént initial values of the parameters. Since
practice has shown that in some cases it is difficult to getiatisa for the dislocation parameters,
the stability of the parametedsande will be examined d ande are related to the dislocation density
and effective outer cut-off radius of dislocations, respety).

Table 5.2 shows the examination of the solution of the CMWRofitSrF, sample ball milled for
30 minutes: the solution parameters are indicated for r@iffeinitial values of the parametedsand

e (the initial value of the other parameters was always theesam= —1.3, b= 1.7 andc = 1.3).

It can be seen that the solution for this sample is well defiawed unique: it finds approximately
the same minimum starting from a wide range of the initiabpagter values. However, at the same
time, by using inappropriate values for the parameters featie sampling of the theoretical Fourier
transforms and/or the intensity pattern (e.g. for the prafiltting parameter) it is possible to get an
unstable behaviour for the solution even in the case of teesample.

Fig. 5.11 shows the WSSR corresponding to the solution o€&VP fit for the samerk sample

72



Figure 5.10: The measured pattern (solid lines) and theespandingw; values used in the CMWP
algorithm (dashed line) fa€dF, sample ball milled for 30 minutes, as a function & Z'he actual
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dini | Eni Asol Bsol Csol dsol €sol WSSR
4 0.5 || -0.8062 (13%)| 2.054 (1.6%)| 1.204 (0.72%)| 19.5 (21%) | 0.87 (43%) | 2.6698
6 0.4 | -0.7934 (14%)| 2.069 (1.4%)| 1.200 (0.63%)| 15.8 (17%) | -1.33 (34%)| 2.6709
8 0.3 || -0.8062 (13%)| 2.054 (1.6%)| 1.204 (0.72%)| 19.5 (21%) | -0.87 (43%)| 2.6698
10 | 0.25 -0.8062 (13%)| 2.054 (1.6%)| 1.204 (0.72%) 19.5 (21%) | -0.87 (43%)| 2.6698
20 | 0.2 || -0.8156 (13%)| 2.044 (1.7%)| 1.207 (0.74%)| 21.5 (18%) | 0.71 (37%) | 2.6696
30 | 0.15]| -0.8331 (13%)| 2.028 (1.4%)| 1.211 (0.62%)| 24.4 (5.7%)| 0.55 (12%) | 2.6702
40 | 0.1 | -0.8597 (13%)| 2.005 (1.4%)| 1.218 (0.61%)| 28.1 (4.4%)| 0.41 (8.9%)| 2.6724
60 | 0.08| -0.8323 (13%)| 2.028 (1.4%)| 1.211 (0.61%)| 24.4 (5.6%)| 0.55 (11%) | 2.6702
80 | 0.05| -0.8331 (13%)| 2.028 (1.4%)| 1.211 (0.62%)| 24.4 (5.7%)| 0.55 (12%) | 2.6702
100 | 0.03 || -0.8605 (13%)| 2.005 (1.4%)| 1.218 (0.61%) 28.1 (4.5%)| 0.41 (9.1%)| 2.6724

Table 5.2: The initial valuesd(,i and i), the solution parametersg,,--- ,€s0)) and the WSSR
values obtained as the solution of the CMWP fit &nf, sample ball milled for 30 minutes. The
initial value of the other parameters was always the saame—1.3,b= 1.7 andc = 1.3. It is noted
that the WSSR values have to be multiplied by a factor df Ithe asymptotic errors of the fitting
parameters are also indicated in parentheses.
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as a function of the value of the parameter (this value was fixed during the fitting and only the
values of the other parameters were refined). It can be segit tias a flat minimum value around

d = 20. However if the same type of curve for a sample is monotsiyancreasing (so its derivative

is always positive and does not reach zero at a particglavalue), when refining all parameters
instead of a well defined solution, the parametepproaches asymptotically zero (and at the same
time e approaches asymptotically infinity). By fixing the valued# (which means that the value
of M, the dislocation arrangement parameter is fixed) a solw#mbe obtained fop, however it

is better to solve the problem without this (ad-hoc) restralhese problems have several possible
sources:

¢ the incorrect choice of the theoretical function is a pdsstiause

¢ the incorrect choice of the sampling parameters of the #tmal Fourier transform or theoret-
ical intensity pattern should also be avoided

¢ the noise and low quality measurements have negative gffecthe evaluation

In section 5.5 a solution for a similar stability problem malso be presented: by using a more
appropriate physical model for the size broadening of tlsaseples the unstable behaviour of the
dislocation parameters can be eliminated.
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Figure 5.11: The WSSR corresponding to the solution of theXFMit for SrF, sample ball milled
for 30 minutes, as a function of the value of tth@arameter (which was fixed during the fitting and
only the value of the other parameters were refined).
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5.2 Modeling asymmetric diffraction profiles

In this section a method suitable for modeling asymmetrie |profiles is presented. It is based on
Mughrabi’s composite modéUngar et al., 1984; Mughrabi et al., 1986) and an asymmestrain
profile is composed by the sum of two shifted strain profildswtated by using the Wilkens model
(Wilkens, 1970). The parameters of these functions correspond to the dislocatmsity in the
inner region of the cell and in the cell’'s wall, respectively this procedure only a single peak is
analysed and the size broadening is neglected. The ewauyatocedure consists of the following
steps:

1. Correction of the peak’s center and normalization: The center of gravity of theneasured
intensity profilely(s) is defined as:

00

J Sln(s)ds

s= (5.7)

[ee]

[ Im(s)ds
Therefore the area normalized and cetarectedintensity profile is given by the transform:

le(s) = =—- (5.8)
[ Im(s)ds

—00

2. Evaluation using the symmetrized theoretical intensity pofile: The size broadening of the
profiles is neglected, so the theoretical Fourier transfoegomes:

AL p.R) e[ -T2 (et (1 )] 59)

SinceA(L) is real and even function df, its inverse Fourier transform, the theoretical intensity
profile is real and even function sf

00

(s, p, RY) = 2 / A(L, p, R:) cog2nLs) dL. (5.10)
0

Note that the theoretical intensity functiofs) is area normalized, sincef 1(s)ds= A(0) =1.

In this stepl¢(s), the area normalized and centarrectedintensity profile is fitted byl (s—
£ p, RY), so the value of the parametefs p andR; is refined.

3. Evaluation using the asymmetrical theoretical intensity pofile:
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In this step, the theoretical intensity functibg(s) is defined as:

las(S) = f1l(s—s1, p1, Re1) + 2l (S— %2, P2, Re2)s (5.11)
where:
f1 + fo =1
SRi + s = 0
(5.12)
f1p1 + fop2 = p

P1 P2
(R)™ - (Ro)"P - &

The parameterns andR{ are known from the previous step, so the parametgis, p2 andR;2

are determined unequivocally by the parameferss, p1 andRg ;. In this stepc(s) is fitted by
las(S), so the value of the parametels s1, p1, RS ; is refined and the value of the parameters
f2, S0, P2, Re2 is calculated using equations (5.12).

Although the method presented here was developed for gimgfiee analysis, it was presented
here, because the CMWP program package [S14] includes &m#@wva program developed
for this procedure.
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5.3 CMWRP application to Al-Mg alloys [S14, S16]

In [S14, S16] the CMWP fitting procedure is used for the eviameof the X-ray diffraction patterns
of Al-Mg alloys prepared by mechanical alloying. The midrastural parameters determined by the
CMWP method were compared to the results obtained by the Mififiyfprocedure. The aluminium-
magnesium samples were prepared and measured as desorisation 4.3 and in [S13]. In [S14]
three samples were investigated, each after 3h ball-mMith nominal Mg concentrations 0, 3 and 6
at. %. The lattice constants of the ball milled samples weterthined by the standard Nelson-Riley
method (1945). The Mg concentration in the solid solutiors watermined by using the slope in
Vegard's law (Pool & Axon, 1952). The true Mg concentratiovese 0, 226 and 552 at. % for the
samples with nominal Mg concentrations 0, 3 and 6 at. %, ctiady.

Figs. 5.12 and 5.13 show the X-ray diffraction pattern ai®dion the Al-3 wt.% Mg powder after
3 h ball milling in linear and logarithmic intensity scalesspectively. The open circles represent
the experimental data. As it can be seen from the figure tha ptase is the Al-Mg solid solution,
however, traces of Mg around the first reflection of Al-Mg candbserved in the logarithmic plot.
The solid line in Figs. 5.12 and 5.13 represent the modeldyabeoretical pattern fitted by the
CMWP procedure. The agreement between the the measureti@fitted patterns is satisfactory.
The severe plastic deformation during milling resultedhia tormation of ultrafine-grained structure
(< X >voi=39 nm) with very high dislocation densitp & 44- 101“m~—2).

The microstructural parameters were determined for eatiplgaby applying both the CMWP and
MWP fitting methods. It was found that the microstructuraigmaeters obtained by the MWP fitting
method are in reasonable agreement with those determindtedlMWP fitting procedure, as it is
shown in Table 5.3. The observed differences are due to ffezatit weightings used in the MWP
and CMWP procedures.

Table 5.3: Microstructural parameters obtained by the M\WW& @MWP procedures for ball milled
Al-xMg (x=0, 3, 6 wt.%) specimens

X [wt.%] | Method | m[nm] o p[10¥*m=2] | M q
0 MWP | 60(6) | 0.18 (2)] 19(2) |1.0(2)]0.7 (@)
3 MWP | 33(3) | 0.21(3)| 40(4) |1.2(2)]05(1)
6 MWP | 19(2) | 0.40(3)| 72(6) |1.0(2)|0.4(1)
0 |CMWP| 73(7) |0.10 (2)] 12(2) |1.1(2)]|1.3(0)
3 | cMwWP| 29(3) | 0293)| 44(4) |12 11
6 |CMWP| 26(3) | 0.13(3)] 100(15) |1.3(2)|0.7 (1)
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Figure 5.12: The measured and fitted patterns (fitted by th&V®@Mnethod) of the Al-3 wt.% Mg
alloy. In this figure the intensity values are plotted as acfiom of 20. The indices of reflections
are also indicated. The differences between the measudefiti@al intensity values are plotted at the

bottom of the figure.
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Figure 5.13: The measured and fitted patterns (fitted by th&V®EMnethod) of the Al-3 wt.% Mg
alloy (logarithmic intensity scale). In this figure the lolam of the intensity values are plotted as a
function of . The indices of reflections are also indicated.
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5.4 CMWRP application to nanocrystalline Cu containing planar
faults [S18]

The effect of stacking faults and twins on X-ray diffractipatterns has been calculated numerically
by using the DIFFaX software (Treacy et al., 1991) for the fi's Bragg reflections in fcc crystals
up to 20 % fault densities by Mr. Levente Balogh [S18]. It wasrfd that the Bragg reflections
consist of up to 5 sub-reflections which are broadened arftedhip different extent according to
particularhkl conditions, for more details see section 2.4 and [S18]. d#aloas also shown that
the sub-reflections can be well described by Lorentzian Ipréfnctions over an intensity range of
about 4 to 5 orders of magnitude. It was further shown that fémture is in good correlation with
the fact that stacking faults or twin boundaries act as batiad of coherently scattering domains
and that they cause homogeneous strain. In that sensenfpoltitwinning causes a kind of size
broadening associated with homogeneous strain. AboutQL50B-reflections were evaluated and
parametrized according to their FWHM and positions retativthe exact Bragg angles. The stacking
faults profile function defined by eq. (2.78) and the caladaparameter files were incorporated
into the CMWP software for evaluating planar faults togetiwéh dislocations and crystallite or
subgrain size distributions [S18]. Bulk nanocrystallirspper specimens were prepared by inert
gas condensation and hot compaction at Argonne Nationabriastry (Ungér et al., 1998). They
are denoted a®, — IS, P, — IS, andN, — IS in the as-prepared state aRgd— T andN, — C after
tensile and compression tests, respectively. By applymegGMWP procedure with the inclusion
of the stacking or twin faults effect the microstructure led$e nanocrystalline copper samples were
evaluated. The twin density obtained by the CMWP proceduedreasing up to a few percents as
the grain size decreases. Fig. 5.14 shows the twin dens#yfasction of the area averaged mean
crystallite or subgrain size for the different specimensah be seen that when the subgrain size is
larger than about 40 nm the twin density is close to zero,iwigiperimental error. At subgrain-size
values smaller than about 40 nm the twin density increasaplhand reaches values up to 6%.
This means that in nanocrystalline Cu twinning becomes atanbial mode of deformation when the
subgrain size becomes smaller than about 40 nm.

5.5 CMWP application to ball milled fluorides [S17]

Nanocrystalline fluorides are important because of theagasas sensor materials. Homogeneous
nanocrystalline materials can be produced by ball millind at the same time, the milling procedure
also introduces several types of strains. In [S17] 4 diffetgpes of fluorides produced by ball milling
for different milling periods were investigated by X-rayffdaction. About 20 diffraction patterns of
Cak, Srk, BaFk, andCdFR, fluorides produced by ball milling were measured by a D500n8ies
high resolution powder diffractometer with incident mohommator. By applying the CMWP proce-
dure, the microstructural parameters for size and straiadening were determined. In about half of
the cases, the measured and fitted diffraction patternsiweesfect agreement throughout the entire
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Figure 5.14: The twin densit§ as a function of the area averaged mean crystallite or sirbgjze
(X)areafor the different specimens. Inert gas condensed and cdeghapecimens: £IS, P-IS, P-

T, No-IS, and N-C. Submicron grain-size samples deformed by ECAP: ECABl{ah left triangles
and ECAP(b) open squares, respectively. The dashed lioegigitle the eye. The solid vertical line
indicates the experimental uncertainty.
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20 range. However, in the rest of the cases the first few reflestal the measured patterns were
significantly narrower than the fitted ones, calculated @otatical basis. At the same time, also in
these latter cases, the rest of the reflections were in gaeeegnt for the higher angular part of the
patterns consisting of about 15 profiles. It is worth to ntitat in the cases when the above mentioned
differences between the measured and calculated pattenesolserved, it was almost impossible to
obtain a physically realistic solution for the microsturetl parameters, i.e. it was not possible to
determine the parameters of the strain effect: the soldiop, the dislocation density arfé, the ef-
fective outer cut-off radius of dislocations was asymputas described in section 5.1.12. In the cases
when the first few measured profiles were narrower than theilezdéd ones, this discrepancy were
interpreted by an X-ray optical interference effect [Sliijikar to what was observed by Rafaja et al.
(2004) in nanocrystalline thin layers. The interferendectfhas been corrected successfully, either
by (i) excluding the affected profiles from the evaluationgadure or by (ii) assuming a diffraction
angle dependent apparent bimodal size distribution otalites [S17].

5.5.1 The interference effect

Rafaja et al. (2004) have observed recently an X-ray opiitatference effect in nanocrystalline
thin film of Ti0.38Al0.62N. As it can be clearly seen in the Wimson-Hall plot in Figure 6 of
Rafaja et al. (2004), the broadening of the first few refleti¢corresponding to the smallegt
values) is significantly smaller than the broadening of theeoreflections. This means that the
apparent domain size corresponding to these peaks is settehie to an interference phenomenon,
consequently these peaks are narrowed. The other peaksponding to largeg values are not
affected by this interference effect, so their broadeniogesponds to the real physical coherently
scattering domain size. As pointed out by the authors, tleetefvas present in the cases when the
following conditions were simultaneously present: (i) toderently scattering domain size was less
than about 5 nm, (ii) a texture was present in the sample @hth@ absolute value of the diffraction
vector was small. In the following a simple interpretatidrite interference effect is presented. Fig.
5.15 shows the reciprocal lattice spots of two adjacentaltes rotated to each other by a relatively
small angle. The difference in their orientation also mehastheir reciprocal lattices are also rotated
to each other by this small angle. Due to the small size oftalijtes, the reciprocal lattice points are
broadened (in the case of isotropic crystallite shape ttenérf broadening is the same in each point).
If the crystallite size is small, the broadening becomeagdand if the difference in orientation is also
small, the reciprocal lattice spots corresponding to sgwadictors can overlap. Due to the increase of
the coherently scattering region in the reciprocal lajtibe peaks corresponding to these points are
narrowed. In Fig. 5.15 the encircled reciprocal latticetgmairs #1 and #2 are overlapping, so their
peak profiles are narrowed and the others correspondinggeriavalues (like spot pair #3) do not
overlap anymore, so their peak profiles are not influencedibyriterference effect. Consequently the
coherently scattering domain size determined from theser lpeaks corresponds to the appropriate
crystallite size. This is the simple and direct reason why #ifect influences only the first few
reflections in a diffraction pattern, as can be seen in athivag in Figure 6 of Rafaja et al. (2004).
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Figure 5.15: Schematic drawing for the interpretation ef ititerference effect. The dashed and the
dotted spots are the blown up reciprocal lattice nodes spording to two adjacent crystallites ro-
tated in orientation with respect to each other by a smallearithe orientations of the two crystallites
are indicated schematically by the dashed and dash-dattedsa The pairs of encircled diffraction
spots numbered #1 and #2 overlap, whereas those numberee walaseparated.
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Figure 5.16: Observed and fitted patternSof, after 12 min of ball milling.
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Figure 5.17: Observed and fitted patternSof, after 40 min of ball milling.
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Figure 5.18: Observed and fitted patternSof, after 60 min of ball milling.
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Figure 5.19: Observed and fitted profiles of the 111 refleatio®rF, after 40 min of ball milling.
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Figure 5.20: Evolution of the interference effect with nmi¢j periods for the 111 diffraction line of
Srk samples.

The measured and fitted patternsSyF, samples corresponding to 12, 40 and 60 minutes of ball
milling periods are plotted in Figs. 5.16, 5.17 and 5.18peesively. As it can be seen in Fig. 5.16,
the measured and the model based, theoretical patter8sFptball milled for 12 minutes are in
perfect agreement throughout the entiBerdnge of the measurement. On the other hand, according
to Fig. 5.17, there is significant difference between thesuesd and fitted curves &rF, ball milled

for 40 minutes at lower@angles, the first few measured profiles are significantlyoweer than the
fitted ones. Nevertheless, also in this case the agreememedre the measured and fitted profiles
for 20 angles larger than about 66 satisfactory. After even longer milling periods, e.gtea60
min ball milling, as can be seen in Fig. 5.18, a similar diparecy can be observed between the
measured and fitted patterns as in the case of the 40 min bedtreample, however, the differences
are definitely smaller, meaning that the effect is less puoned in this case. As can be seen in Fig.
5.19 showing the measured and fitted profiles of the 111 rifteof SrF, ball milled for 40 minutes,

far enough from the peak center the measured and fitted [grabiecide, so the problem cannot be
related to the incorrect determination of the backgroumdlleThis suggests that either the shape of
the peak or the extent of broadening is incorrect. The emoludf the interference effect with milling
periods is shown in Fig. 5.20. It can be seen that the differem@re increasing up to 40 min and start
decreasing at longer milling periods. The microstructpeaiameters obtained by the CMWP fitting
procedure also show a discrepancy for the samples for wiifignehces were observed. Instead of a
well defined solution for the parameters of the microstrgtthe solution for the dislocation density
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and the effective outer cut-off radius of dislocations @aghes asymptotically infinity and zero,
respectively, so without applying some artificial resttsife.g. by fixing the value d¥1) one can get
only a physically unrealistic solution. By omitting the fifew reflecitions, the fitting procedure works
well for the rest of the profiles and gives a reasonable swiuflhe observed differences between the
measured and the model based, fitted patterns suggest sempeeof a similar interference effect as
observed by Rafaja et al. (2004) in Ti0.38AIl0.62N thin filragwever, in the case of these fine loose
powder samples, there can't be a strong orientational letioa (real texture) between the particles,
but a local orientational correlation (local texture) isspibble between adjacent crystallites. If the
ratio of these locally textured particles is large enouglis producing a similar interference effect
as the one observed by Rafaja et al. (2004). From this we cacluae that two main conditions
make the existence of this kind of interference plausib)ei {raction of the fluoride powder consists
of nanocrystalline particles. This condition is producedbiall milling. (ii) In this fraction of the
powder the orientation of adjacent particles is crystalpgically not too far from each other, in
other words, there is a local texture in the powder. Sincddttiee parameters of these fluorides are
relatively large, the first few diffraction spots are relaty close to the origin of reciprocal space,
meaning that this orientational correlation condition @& too strict. The orientational correlation
between adjacent crystallites can be caused by the Coulutertaction present in these ionic crystals.
This can produce some kind of epitaxial interaction betwadjacent crystallites resulting in a local
orientation correlation between them. In ball milled colfar example, epitaxially touching particles
were observed by HRTEM (Yao & Thélén, 2000). For longer mdlperiods the milling procedure
enables coagulation and/or coalescence of smaller gaticlis increasing the average crystallite size
and diminishing the magnitude of the interference effect.

5.5.2 Correcting for the interference effect

The angular dependence of the apparent size distributitimeicase of th&rF, sample ball milled
for 40 min (where the interference effect is the most promediy present) was examined as follows:
with fixed strain parameter values, the peaks were fittedviddally and the lognormal size distribu-
tion parameters were determined for each profile. Ml@do values obtained this way are shown in
Fig. 5.21 as a function aj. It can be seen thah decreases strongly whereass slightly increasing

in good correlation with the model in section 5.5.1.

The interference effect was corrected for by the followiwg fundamentally different approaches.
(i) The first two reflections were omitted from the fitting, ththe remaining peaks, which were
practically not affected by the interference effect preddhe correct microstructural parameters. (ii)
In accordance with the model of the effect of interferencehmndiffraction patterns, it is assumed
that a fraction of the powder has an apparent crystallite lsiger than the true value. Furthermore
it is assumed that the fraction of the crystallites affedtgdhe interference effect and the rest of
the powder, both can be described by separate size digbrisutLatter are denoted bfj(x) and
f2(x), respectively. A decaying mixing parameteis introduced in order to describe the angular
dependence of the interference effect. The effective s&telalition function,fes s is obtained as the
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Figure 5.21: Then ando size parameters, determined individually for the first fawfites in the
diffraction pattern ofSrk, ball milled for 40 min, as a function af (g = ZS'Tne).
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weighted sum off1(x) and fa(x):

fert(X) = EF2(0) + (1— &) f2(x) (5.13)

The simplest and most plausible selection for the sizeildigion functions is the lognormal function,
so f1(x) andf,(x) are described by lognormal size distribution function$wilite median and variance
parametersm, 01 andny, 02 respectively. Eq. (5.13) shows that the effective sizeritistion is

a g dependent bimodal size distribution function in which tipparent part disappears wigh The
numerical analysis was shown that theependence of the mixing paramefavas well described by
fasimple Lorentzian function (Q%QO: E = rlAsz whe_res:. 9 —ggo, qo = ZSin(.Glll)/)\ and D111

is the Bragg angle of the 111 reflection. By using this coroectonsiderable improvement of the
quality of the fitting was achieved. A typical example of thiérig with this correction, corresponding
to SrF, ball milled for 40 min is shown in Fig. 5.22 which has to be cared to the uncorrected fit
plotted in Fig. 5.17.

It is also noted that by using this correction the fitting wieke and gave reasonable values for the
microstructural parameters without applying any restsaim omitting any part of the patterns. In the
following the microstructural parameters obtained by gshns correction are analyzed.

SrF2 40 min

10000 - ~ Measured
: —— Fitted

Counts

1000 -

20 ()

Figure 5.22: Fitting with correction for the interferendéet for Srk ball milled for 40 min.
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5.5.3 The microstructure of the fluorides

Figs. 5.23 and 5.24 show typical lognormal distributiondiions for the ball milledsrF, specimens
according to the parametens and o given by the CMWP procedure. The figures show that after
shorter ball milling periods, i.e. about 6 and 12 min, thecapens consist of almost monodisperse
and relatively large crystallites. At longer ball millingpods the size distributions indicate that the
size of crystallites collapses dramatically. At the lortdeedl milling periods a slight re-increase of the
crystallite size can be observed, see Fig. 5.24. This smaliéfinite reincrease has been observed
in three fluoridesSrk, BaF, andCak,. It means that during the ball milling of these fluorides the
particles are first fragmented and subsequently becomesdi@lgain. Similar behaviour during ball
milling has been observed frequently in the literature. i@&re-Paz & Jaramillo-Vigueras (1999)
ball milled ductile materials such as Cu, Ni and Cu-Ni all@aysl observed coalescence of grains
after longer milling periods by TEM investigations. Rac ammvorkers (2005) ball milled dodeca-
tungstophosphoric acid (HPW) and Nafion-H for catalyticqmses. Authors claim that because
of coalescence catalysts with high catalytic performarezpiire the use of optimal milling time.
Coalescence during ball milling was also observed by Pal.e{1®86). Janot & Guerard (2005)
also observed coalescence during ball milling of anodicemnals for lithium-ion batteries. They state
the importance of surface energy in the procedure of coatesc The importance of coalescence
is well known in the process of sintering, where surface gnes one of the controlling parameters
(Wakai & Aldinger, 2003). The area weighted mean crysw8ize valuess X >areq, @s a function of
the milling period are shown in Fig. 5.25 for the differentoltides. The figure shows thatx >grea
decreases first with the milling period and after a minimuoe@# re-increases slightly in accordance
with the size distribution functions. The absence of thgtglie-increase of the crystallite sizeGalF,
might be due to the rather long incubation period observedarevolution of the dislocation density
discussed in detail below. The evolution of the dislocatiensity,p, with milling period is shown

in Fig. 5.26. In the initial state of the as-grown crystals thslocation density is practically zero,
i.e. p < 10¥m~2, this value is marked schematically in the lower left cornéthe figure. The
figure indicates that the investigated fluorides fall int@ tfferent groups. (i) In the case 8ak
andSrk the dislocation densities increase almost monotonousty @out 7 10°m~2 during the
first 30 min milling period and saturate for the rest of thelimg procedure. (ii) In the other group,
Cak andCdR, during the first 6 to 12 min ball milling increases to about®- 10°m~2 where it
saturates for about 20 and 30 min in the cas€ai, andCdF,, respectively. After this intermediate
plateau the dislocation density increases again durirtduball milling and reaches the same large
values ofp as in the case of the other two fluorides. The figure suggestatter even longer milling
periods also in these two fluorides, i.e. @aF, andCdF,, the dislocation densities would saturate
at around values of 7L0®m~2. The presence of an incubation period in the milling procechf
Cak andCdF, is unequivocally present. A much weaker, however, exissingrt incubation-like
stage in the case @aF, and SrF, can also be observed, as shown in Fig. 5.26. The latter lasts
up to about 12 minutes. The incubation periods in the evahudif the dislocation densities can be
correlated to the homologous temperatures of the fluoriigs,= -I%T (whereTgt andT,y, are room
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temperatureJrt = 300K, and melting temperature, respectively). In Fig. 5.27 tioeibation periods
are plotted versus the homologous temperatures. A goodlataon between the two parameters can
be seen. The rapid increasemfwithout longer incubation periods can be observed in tlse cd
Bak, andSrF, with the lowestTyom values. On the other hand, the lengths of the incubatiorogsri
increase monotonously with,om Based on these observations the development of the diglnca
density can be discussed as follows. At the very beginninggadif milling a rapid production of
dislocations is necessary in order to enable plastic defbom. In the case afaF, andCdF,, once
a relatively large number of dislocations (aboub 2L0°m~2) are present, due to the highBfom
and lowerTy, it can be assumed that the existing dislocations are mabhdeplastic deformation can
proceed relatively easily without further increasgpoHowever, at the end of the incubation period,
further plastic deformation needs even more dislocatitreyeforep increases rapidly again up to
values of about 710°m~2. In the case oBaF and SrF, whereThom is lower andTy, higher, the
mobility of dislocations is considerably restricted as gamed to the other two fluorides. Therefore,
plastic deformation can only be enabled by intensive daloa production resulting in a rather short
incubation-like stage followed immediately by furtherigmcrease op. Finally, this rapid increase
is followed by the saturation gb at about 7 10®m~2 which is close to the theoretical maximum

value of average dislocation densities (Essmann et al1)198

0.15
SIF, _A (@)
|
r\ |
0.10-*“ ‘ 12 min
z | v
= H 60 min i
0.05 - \ ,' 6 min
| .
0.00 T T J%
0 100 200

X [nm]

Figure 5.23: Size distribution functions 8fF, samples ball milled for 6, 12 and 60 min.
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Figure 5.24: Size distribution functions 8fF, samples ball milled for 30, 40 and 60 min.

150

Milling period [h]
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Figure 5.27: The incubation period as a function of homolmsgemperature.
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Chapter 6
Summary and Conclusions

Most of the physical properties of crystalline materialse &atndamentally determined by the mi-
crostructure. The most important fundamental microstmattproperties are the type, density and
distribution of crystal defects and the grain or crystaltructure. X-ray line profile analysis (XLPA)

is one of the most important and powerful alternative meshioelsides electron microscopy for the
characterization of microstructures.

This dissertation presents the theoretical models of therasiructure, the classical methods of
XLPA and my newly developed methods, the MWP and CMWP proesjwhich are based on the
modeling of the physical properties of the different cri/difects. Several applications are presented
in order to show the efficiency of the MWP and CMWP methods.

e The theoretical models of the microstructure are preseint€hapter 2: the size broadening
of the profiles is calculated for the most important cryg@mihapes and lognormal crystallite
size distribution. The Fourier transform of the size praBlelso given. The Wilkens model of
dislocations is a sophisticated model for the descripticth® strain profile corresponding to a
physically realistic dislocation configuration. By linkjrit with the theory of strain anisotropy,
the model can be applied for a general description of stremadening of diffraction peaks.
The broadening caused by planar faults is also discussed.

e Chapter 3 gives a review of the classical methods of XLPA. basic breadth and Fourier
methods: the classical and modified Williamson-Hall methadd the classical and modified
Warren-Averbach procedures are presented. The recenyapeed full profile and whole pat-
tern fitting methods and the moment methods are also presente

e Chapter 4 describes the MWP method, which is a Fourier methaskd on the modeling of
the physical properties of the X-ray diffraction profiles the different crystal defects. By
comparing the so obtained model based line profiles with thasured ones the method gives
the microstructural parameters of the investigated nedteriThe steps of the data preparation
and the steps of the MWP evaluation procedure are preser8ederal applications of the
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method have been selected and the results provided by M\W&Heen compared to the results
of other microstructural methods, e.g. electron microgcop

¢ In Chapter 5, the CMWP method is presented, which is alscdbas¢éhe modeling of the phys-
ical properties of the different crystal defects, but iastef fitting the separated peak profiles, it
works directly on the measured intensity pattern. By commgathe model based pattern to the
measured one the microstructural parameters are detetmiihe principles of the method, the
steps of the evaluation procedure and the several avaftaiiends of the CMWP program are
presented. The details of the numerical procedure, e.gddgtermination of the background,
the usage of the instrumental profiles, the weighting algors and the different aspects of the
sampling of the intensity pattern and the Fourier transfane also given. The convergence and
numerical stability of the procedure are also examined. gphang both the MWP and CMWP
procedures for the determination of the microstructuredpeeters of ball milled Al-Mg alloys,
the results obtained by the two different procedures wenepawed. The method was applied
to nanocrystalline Cu and the planar fault density was detexd. A special application of the
CMWP procedure for systematically prepared ball milled fiides is presented: for some of
the samples an unusual X-ray optical interference effestoteserved and the microstructural
parameters have been determined by correcting for thisteffe

By applying the MWP and CMWP methods, the microstructurapprties of several different mate-
rials or groups of materials are determined and these piepare examined as a function of several
mechanical or thermal treatments.

The most important results of my work are:

e The size profile [S1] and the size Fourier transform of cohiyescattering domains with
spherical or ellipsoidal crystallite shape and lognornieg slistribution have been determined
[S4, S5, S6, S8]. The expression of the Fourier transforrpaupthe fast numerical evaluation.

e The method for applying the strain profile for XLPA based am\ttilkens model of dislocations
and the model of average contrast factors have been workg84S6, S14].

e By using the theoretical size and strain profiles new metiads been developed for the ex-
traction of microstructural parameters from X-ray measweets:

— by fitting simultaneously the whole Fourier transforms deisity profiles obtained by
separation and instrumental deconvolution, (the methottipMe Whole Profile Fitting:
MWP) [S4, S6], and

— by the convolutional fitting (with the inclusion of the inginental effect) of the whole
diffraction spectrum, (the method of Convolutional MulépWhole Profile Fitting:
CMWP) [S14].
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e A software package has been developed implementing theoatettescribed in sections 4 and
5, which is available to the public [S4, S6, S14] through tledwht t p: / / www. renyi . hu/ mwp
andht t p: // www. r enyi . hu/ crwp.

e By using the MWP method | have shown that:

— the dislocation density has the average value éf0? in severely deformed Ti, which
is in accordance with electron microscopy investigatiarg] in this deformation stage
mainly the slip systems <a> and <c+a> are activated [S11, $42,

— by applying ball milling and heat treatment of PbS (galersagles, a systematic set of
samples was produced and by evaluating the X-ray line psadii¢these samples using the
MWP method a map of microstructure was obtained. By compatie microstructural
parameters of samples from ancient cosmetics fabricatdtkiigyptian Kingdom 3500
b.c. with the parameters of the systematically preparedokesn have shown that only
gentle crushing and no heat treatment or heat treatmeneaterature of less than 300
°C was applied [S9] for the fabrication of the archaeologocametics.

e By using the CMWP method | have shown that:

— in ball milled Al-Mg alloys the dislocation density as wel the average crystallite size
shows a saturation after 2h of ball milling and the resulttimed by the MWP and
CMWP methods have been compared [S13, S16, S14],

— in ball milled fluorides (ME, M=Ca,Ba,Cd,Sr) the presence of an X-ray optical interfer-
ence effect can be observed which is present primarily ifaverage crystallite size of
a larger portion of crystallites is about 5-10 nm or smal&t{]. The X-ray optical in-
terference effect means that the first few peak profiles beawmarrower than what would
correspond to the domain size.

¢ | have shown that if the method of XLPA is carried out corngctthich means that the ex-
periments are done with an angular resolution high enoughtlaet the evaluation is based
on correct microstructural models, then good correlatsookiserved between TEM and XLPA
parameters. For example, in the case of nanocrystalligld,Sarticles the size distribution
determined either by TEM or XLPA are in excellent agreemeht[S1]. In a large number of
cases very good correlation was found between the miciatal parameters, especially the
subgrain size, and size distribution, the dislocation dgr@nd dislocation types determined
either by TEM or XLPA [S1-S22].

As the results of this work, a coherent set of methods has tdeegloped which is suitable for the

characterization of the microstructure of most differentstalline materials, e.g. metals, alloys,

ceramic materials, minerals or polymers, in terms of the aizd size distribution of crystallites or

grains, the density, the distribution and character ofodedions and the density and type of planar
defects.
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Short summary

Most of the physical properties of crystalline materiale &atndamentally determined by the mi-
crostructure. Electron microscopy is an important metluodte visualization of the microstructure.
The most important fundamental microstructural propsréiee the type, density and distribution of
crystal defects and the grain or crystallite structure.aj{dine profile analysis (XLPA) is one of the
most important and powerful alternative methods besidegrein microscopy for the characterization
of microstructures. This method gives information aboetfthilowing basic microstructural proper-
ties: (i) the size and distribution of crystallites, (iietlshape anisotropy of crystallites, (iii) the den-
sity, character and distribution of dislocations and (ing tensity and type of stacking faults and twin
boundaries. This dissertation presents the most impotti@otretical models of the microstructure
according to the literature, my results related to the dgyekent of these models, the most important
methods of XLPA: the classical ones and some of the most tecethods of literature. The most
important part of my work is the development and implemeénitedf new XLPA methods, which are
based on the modeling of the physical properties of the rdiffecrystal defects. By comparing the
so obtained model based line profiles with the measured tieeméthods give the microstructural
parameters of the investigated materials. By applyingginesthods the microstructural properties of
several different materials or groups of materials arerdeteed and these properties are examined as
a function of several mechanical or thermal treatments.

The most important new scientific results of my work are: (plve determined the size profile [S1]
and the size Fourier transform of coherently scatteringaoswith spherical or ellipsoidal crystal-
lite shape and lognormal size distribution [S4, S5, S6, 8B]l elaborated the method for applying
the strain profile for XLPA based on the Wilkens model of disitons and the model of average
contrast factors [S4, S6, S14]. (ii)) | developed two new et by using the theoretical size and
strain profiles for the extraction of microstructural paedens from X-ray measurements: (a) by fit-
ting simultaneously the whole Fourier transforms or intigngrofiles, (the method Multiple Whole
Profile Fitting: MWP) [S4, S6], and (b) by the convolutiondtifig of the whole diffraction spec-
trum, (the method of Convolutional Multiple Whole Profiletttng: CMWP) [S14]. (iv) | worked
out a software package for these methods described whiahbiscly available [S4, S6, S14]. (v)
By using the MWP method | have shown that: (a) the dislocadiensity has the average value of
10'%m~2 in severely deformed Ti, which is in accordance with elatmticroscopy investigations;
and in this deformation stage mainly the slip systems <a><ai@> are activated [S11, S12, S22],
(b) by applying ball milling and heat treatment of PbS (galesamples, a systematic set of samples
has been produced and by evaluating the X-ray line profiléisesfe samples using the MWP method
a map of microstructure has been obtained. By comparing tbestructural parameters of samples
from ancient cosmetics fabricated in the Egyptian Kingdds0®b.c. with the parameters of the
systematically prepared samples | have shown that onlyeggentshing and no heat treatment or heat
treatment at a temperature of less than 30@vas applied [S9] for the fabrication of the archaeolog-
ical cosmetics. (vi) By using the CMWP method | have shown: tfe) in ball milled Al-Mg alloys
the dislocation density as well as the average crystailiteshows a saturation after 2h of ball milling
and the results obtained by the MWP and CMWP methods havedoeepared [S13, S16, S14], (b)
in ball milled fluorides (MR, M=Ca,Ba,Cd,Sr) the presence of an X-ray optical interfeeeeffect
can be observed which is present primarily if the averagstalite size of a larger portion of crystal-
lites is about 5-10 nm or smaller [S17]. (vii) | have shownttimananocrystalline SN4 particles the
size distribution determined either by TEM or XLPA are in elkent agreement, cf. [S1]. In a large
number of cases very good correlation was found between igr@structural parameters, especially
the subgrain size, and size distribution, the dislocatemsity and dislocation types determined either
by TEM or XLPA [S1-S22].

As the results of this work, a coherent set of methods has 8eesloped which is suitable for the
characterization of the microstructure of most differapstalline materials.



Rovid 6sszefoglalas

Kristalyos anyagok szamos fizikai tulajdonsagat alafmetmeghatarozza a mikroszerkezet. A
mikroszerkezet szemléltetésének fontos modszere azaiekikroszkdpia. A legalapvébb mik-
roszerkezeti tulajdonsagok a kristalyhibak tipusauségé és eloszlasa valamint a szemcse-, il-
letve krisztallit szerkezet. Az elektronmikroszképia hattlaz egyik legfontosabb alternativ méd-
szer a rontgen vonalprofil analizis (RVPA). Ez a modszeradtiien a kdvetkez mikroszerkezeti
tulajdonsagokrol ad felvilagositast: (i) krisztallitokénetédl és méreteloszlasrol, (ii) krisztalli-
tok alak anizotropiajarol, (iii) diszlokaciok sirlisége tipusarol és eloszlasardl, valamint (iv)
rétegddési hibak illetve iker hatarok slrliségeégés tipusardl. A disszertacibban bemutatom a
mikroszerkezet legfontosabb irodalomban fellebhetodelljeit, illetve eredményeimet melyek ezek
tovabbfejlesztésével kapcsolatosak, ismertetem a RVRPAo$abb mddszereit a klasszikusaktol
kezdve a legUjabb irodalomban fellelbehddszerekig. Munkam legjeldérgtebb része a RVPA olyan
modszereinek a kifejlesztése, amelyek a kilodokizstalyhibak fizikai tulajdonsagai alapjan mo-
dellezik a rontgendiffrakcids vonalprofilokat. Ezeknek adellezett vonalprofiloknak a mérésekkel
valo dsszevetéséh a kifejlesztett modszerek segitségével megkaphatjuizsgalt anyag mikro-
szerkezeti paramétereit. A kidolgozott médszerek alkafmaval meghatarozom szamos kuloérib6z
anyag illetve anyagcsalad mikroszerkezeti tulajdonsagaliamint azt, hogy ezek hogyan valtoznak
meg kulonbdd mechanikai vagy termikus kezelések hataséra.

Ennek a munkanak a soran kapdtbb Uj tudomanyos eredményeim a kovetdez(i) Meghataroz-
tam gbmb- [S1], illetve forgasi ellipszoid alaku, lognodim@néreteloszlasu koherens domének méret
profil figgvényeit és azok Fourier transzformaltjat [S4, SB, S8]. (ii) Kidolgoztam a deforma-
cios profil felhasznalasanak modszerét a diszlokaciok &kgkféle modellje és az atlagos kontraszt
faktorok modellje alapjan [S4, S6, S14]. (iii) Az elméletémet- és deformacids profilok alapjan
modszereket dolgoztam ki a mikroszerkezet paraméteraineghatarozasara rontgendiffrakcios
mérésekbl: (a) a teljes Fourier transzformaltak, illetve teljegimzitasprofilok egydittes illesztésével
(Multiple Whole Profile Fitting: MWP) [S4, S6], illetve (b) teljes intenzitas spektrum konvolu-
cios illesztésével (Convolutional Multiple Whole Profilétihg: CMWP) [S14]. (iv) Barki szamara
elérhebd programcsomagot fejlesztettem ki ezekhez a médszerddeS6, S14]. (v) Az MWP
eljaras alapjan megmutattam, hogy: (aftetiesen alakitott Ti-ban a diszlokacidsiirliség®mo 2
atlagos értéket ér el, 6sszhangban az elektronmikrosskédpsgalatokkal; tovabba, hogy ilyen de-
formalt allapotban doden a <a> és <c+a> tipusu csuszasi rendszerek dominalnak$32, S22],
(b) a PbS (galenitpriésével és tkezelésével késziilt mikroszerkezeti allapottérképjaamegal-
lapitottam, hogy az ie. 3500 Egyiptomi Kiralysagokban nasizkozmetikumok készitésekor csupan
rovid idejl 6rlést és 300C-nal nem magasablbmérsékletli bkezeléseket alkalmaztak [S9]. (vi)
A CMWP eljaras alapjan megmutattam, hogy: (a) golyés mablmiwolt Al-Mg 6tvozetben mind

a diszlokacio sirliség, mind pedig a szemcseméret Didéa utan teltidést mutat, tovabba az
MWP és CMWP modszerekkel kapott eredményeket 6sszehasttanti [S13, S16, S14], (b) golyos
malombanérolt alkalifoldfém fluoridokban kimutattam egy Ujszeréintgen optikai interferencia
effektus fellépését, amely éisorban akkor jelenik meg, ha a méreteloszlas jékehtinyadaban a
szemcsemeéret 5-10 nm, vagy anndl kisebb [S17]. (vii) Nastétyos SiN4 részecskéinek TEM
és rontgen méreteloszlasara igen j6 egyezést kaptam [SYmES esetben igazolddott, hogy az
elektronmikroszképos szubszemcse méret, diszlokaciésg, valamint diszlokacio tipus kitdien
egyezik a vonalprofil analizis modszerével nyert értékel&e-S22].

Munkam eredményeképperdéllt egy olyan koherens médszer egyttes, amely alkalnegkalon-
boézbbb kristalyos anyagok, nevezetesen, fémek, otvozetat@nkak, lozetek, illetve polimerek
mikroszerkezetének jellemezésére a krisztallit és szeméret, a diszlokacié slrliség, eloszlas és
tipus, illetve a rétegrési hibak alapjan.



